
Söze: One Network Telemetry Is All You Need
for Per-flow Weighted Bandwidth Allocation

at Scale (To appear in OSDI’25)
T. S. Eugene Ng

with

Weitao Wang
Rice University

Optical circuit switched reconfigurable
networks are important in the long run
• Low power
• Reliable Cost effective
• Data rate agnostic

• Not to mention there are many technical challenges

2

• Moving bandwidth
• c-Through HotNets’09, SIGCOMM’10, Switching divide SoCC’11, For big data HotSDN’12,

OmniSwitch HotCloud’15
• Optical multicast

• *-cast CCR’13, Blast INFOCOM’15, HyperOptics HotCloud’16, Republic ICNP’18, Shufflecast
ToN’22

• Coflow aware circuit scheduling
• Sunflow CoNEXT’16

• Whole network topology transformation
• Flat-tree HotNets’16, SIGCOMM’17, Transtate OptSys’21

• Failure resilience
• ShareBackup HotNets’17, SIGCOMM’18

• Reshaping traffic at the edge
• RDC SOSR’19, NSDI’22, OSSV OptSys’21, INFOCOM’24

3

2010 2015 2020 2025

Former PhD students
Guohui Wang
Yiting Xia
Xiaoye Sun
Xin Sunny Huang
Dingming Wu
Afsaneh Rahbar
Sushovan Das
Weitao Wang

4

Weighted fair sharing allocation:
Orange (w = 2) = 50%

Blue (w = 1) = 25%
Purple (w = 1) = 50%

Weighted allocation could benefit critical applications, or critical path in applications.

Motivation: Differentiated Services Benefit Applications

Benefits of weighted bandwidth allocation

5

Weighted
max-min fair

Max-min fair

Utility fair

Proportional fair

Prioritization

Application-guided

weight = 1

weight = utility

weight = RTT

e.g. weight = 1/size

weight = arbitrary

Altruistic flowe.g. weight < 1.0

Prioritized flowe.g. weight > 1.0

6
How can orange flow get more bandwidth with minimal overhead?

Challenge: Change Weight with Minimal Information Exchange

I don’t want to inform
switches or
controllers!

Weighted fair sharing allocation:
Orange (w = 2) = 50%

Blue (w = 1) = 25%
Purple (w = 1) = 50%

7

Key Insight: Minimize Information Exchange With
In-band Network Telemetry (INT)

Flows share the same bottleneck link.
Can we use the bottleneck link to exchange information?

Opportunity --- In-band Network Telemetry (INT)
• The link could report some basic information to the data packet

• Queuing length / queuing delay
• Link utilization / available bandwidth
• …

• CSIG is Google’s INT standard, released in 2024
• Only the bottleneck hop’s signal will be collected: max hop delay, max hop utilization
• INT will be collected in the forwarding path, reflected through reverse path

8

3 us 20 usSender
Host
Stack

9

𝑟! =
𝑤!

𝑤" +𝑤# +⋯+𝑤$
& 𝐵

Goal

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

10

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

𝑟! =
𝑤!

𝑤" +𝑤# +⋯+𝑤$
& 𝐵

Goal

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$

Targets of allocation
Full utilization
Weighted Fair

1. Split into two equations

Targets of allocation

11

Full utilization
Weighted Fair

𝑟! =
𝑤!

𝑤" +𝑤# +⋯+𝑤$
& 𝐵

Goal

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$1. Split into two equations

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

12

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$

1. Split into two equations

2. Find a signal for each equation

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

13

IF 𝑟! + 𝑟" +⋯+ 𝑟# > 𝐵;
 THEN queue increases
IF 𝑟! + 𝑟" +⋯+ 𝑟# < 𝐵;
 THEN queue decreases

IF queue stabilizes around any level
 THEN 𝑟! + 𝑟" +⋯+ 𝑟# = 𝐵

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$

1. Split into two equations

2. Find a signal for each equation

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

14

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$

IF 𝑟! + 𝑟" +⋯+ 𝑟# > 𝐵;
 THEN queue increases
IF 𝑟! + 𝑟" +⋯+ 𝑟# < 𝐵;
 THEN queue decreases

IF queue stabilizes around any level
 THEN 𝑟! + 𝑟" +⋯+ 𝑟# = 𝐵

1. Split into two equations

2. Find a signal for each equation

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵. How to reach the same $%&'

(')*+&?

15

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$

IF 𝑟! + 𝑟" +⋯+ 𝑟# > 𝐵;
 THEN queue increases
IF 𝑟! + 𝑟" +⋯+ 𝑟# < 𝐵;
 THEN queue decreases

IF queue stabilizes around any level
 THEN 𝑟! + 𝑟" +⋯+ 𝑟# = 𝐵

1. Split into two equations

2. Find a signal for each equation

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵. How to reach the same $%&'

(')*+&?

16

How to reach the same $%&'
(')*+&?

Create a mapping between:

𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔 = 𝑇
𝑟𝑎𝑡𝑒
𝑤𝑒𝑖𝑔ℎ𝑡

𝑟" + 𝑟# +⋯+ 𝑟$ = 𝐵
𝑟"
𝑤"

=
𝑟#
𝑤#

= ⋯ =
𝑟$
𝑤$

IF 𝑟! + 𝑟" +⋯+ 𝑟# > 𝐵;
 THEN queue increases
IF 𝑟! + 𝑟" +⋯+ 𝑟# < 𝐵;
 THEN queue decreases

IF queue stabilizes around any level
 THEN 𝑟! + 𝑟" +⋯+ 𝑟# = 𝐵

1. Split into two equations

2. Find a signal for each equation

3. Give signal an extra meaning

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

17

1. Split into two equations

2. Find a signal for each equation

3. Give signal an extra meaning

4. Create convergence algorithms

(Log Scale)

Smaller rate/weight has higher target queuing

Larger rate/weight has lower target queuing

Design a mapping between rate/weight and queuing:

𝑞𝑢𝑒𝑢𝑖𝑛𝑔 = 𝑇
𝑟𝑎𝑡𝑒
𝑤𝑒𝑖𝑔ℎ𝑡

= 𝑝 ⋅
𝑙𝑛 200 − 𝑙𝑛 𝑟

𝑤
𝑙𝑛 200 − 𝑙𝑛(0.02)

+ 𝑘

Any queuing indicates an anchor rate/weight:

𝑟𝑎𝑡𝑒
𝑤𝑒𝑖𝑔ℎ𝑡

= 𝑇,! 𝑞𝑢𝑒𝑢𝑖𝑛𝑔

Each flow compare its target with the
same observed queue length

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

rate / weight

18

1. Split into two equations

2. Find a signal for each equation

3. Give signal an extra meaning

4. Create convergence algorithms

Converge all the flows’ rate/weight to anchor:

𝑛𝑒𝑤_𝑟𝑎𝑡𝑒 = 𝑟𝑎𝑡𝑒 ⋅
𝑇,! 𝑞𝑢𝑒𝑢𝑖𝑛𝑔
𝑟𝑎𝑡𝑒/𝑤𝑒𝑖𝑔ℎ𝑡

-

Consider a single link:
All flows on link are 𝑓!, 𝑓", … , 𝑓# ;
The weights are {𝑤!, 𝑤", … , 𝑤#};
The rates are {𝑟!, 𝑟", … , 𝑟#};
Link bandwidth is 𝐵.

(Log Scale)

Smaller rate/weight has higher target queuing

Larger rate/weight has lower target queuing

Each flow compare its target with the
same observed queue length

rate / weight

The link with the largest queuing delay is the bottleneck.

For Arbitrary Networks, Convergence Can Be Proved

19

Queuing1 = T(25) Queuing2 = T(50)

weight = 2

T(25) > T(50)
Thus, queuing1 is the bottleneck
for orange

weight = 1weight = 1

Implementation

• Linux kernel module
• Implementation

• 90 lines of kernel module code
• Use socket parameter as interface between application and network stack
• Application could change socket config to change priority

• Topology
• 10 hosts + 1 Tofino switches[3]

• Kernel-bypass Implementation - eRPC
• Modified packet format for INT-signal
• Provide inherent application interface for changing priority

• NS-3 simulator implementation
20

Evaluation: Changing weight

Soze is accurate and stable
21

Evaluation: Agility and Granularity

With different fat-tree topology size, Soze
achieves the same convergence speed.

22

With the changing weights, Soze could
enforce weight accurately.

Centralized
solution

Evaluation: Critical-path Prioritization

Please check out our OSDI paper for many more details and results in a few weeks!
23

Experiment setup Fair allocation Weighted allocation

Closing the circuit -- How does Soze relate to
reconfigurable networks?
• Reconfigurable networks can have sudden and massive change in

end-to-end performance characteristics
• INT/Soze can potentially provide a powerful and general framework

for end-to-end adaptation in reconfigurable networks
• What INT(s) is optimal for reconfigurable networks?
• How to overcome circuit down-time that disrupts the delivery of INT?
• …

• Looking forward to discussions

24

