TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs

Weiyang (Frank) Wang, MIT CSAIL

Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, Anthony Kewitsch

The era of large deep neural networks (DNNs)

Tell me about yourself in two sentences

G

I am ChatGPT, a highly advanced language model developed by OpenAI. My primary function is to assist users by generating humanlike responses and engaging in conversations on a wide range of topics.

GPT Large Language Model Deep Learning Recommendation Model Recommendation Model **DALL.E** Image Generation Model

• The growth of large DNN models creates demands efficient distributed DNN training systems

State-of-the-art training clusters

Fat-Tree network topology [1]

- The Fat-Tree network topology forms the basis of today's training cluster
- Traffic oblivious fabric the provides uniform, full-bisection bandwidth between server pairs
- Ideal when the workload is unpredictable and consists mostly of short transfers
- Full-bisection networks are not the best network topology for DNN training!

Network is becoming a bottleneck and getting too expensive

- Network Overhead: the amount of time spent on communication only
- 80 Network Overhead (%) \$400M **—**DNN 2 -DNN 3 Cost 60 \$300M Vetwork 40 \$200M 20 \$100M \$0M 0 8 16 16384 32768 1 2 65536 4 Number of GPU servers Number of GPUs
- Network Cost: total cost of network switches and transceivers at 400Gbps

Previous work on distributed DNN training optimization does not consider physical topology

DNNs training traffic has different properties

DNNs training traffic has different properties

- Key observations:
 - 1. Traffic patterns do not change across training iterations

DNNs training traffic has different properties

- Key observations:
 - 1. Traffic patterns do not change across training iterations
 - 2. Traffic patterns are model-dependent

Reconfiguring physical network topology

Topology A

Topology A

Topology A

Reconfiguring physical network topology

Topology A

Topology B

Topology C

Reconfiguring physical network topology – how often?

- Ideally, we could change the topology according to the instantaneous demand
- However, this is challenging with today's technology
 - Existing commercially available solutions that scales to thousands of ports are not fast enough for many DNN models

- In this presentation, we focus on a **one-shot reconfiguration** policy
 - Find one topology for the **entire duration** of each training job

Co-optimization challenge: Huge search space for optimal DNN training

• The configuration space is huge!

Vetwork Topology &

Missing potential colutions! Sea ch Dace e ploces!

DNN Parallelization Strategy

Alternating optimization framework to co-optimize DNN parallelization strategy and network topology

Alternating optimization framework to co-optimize DNN parallelization strategy and network topology

What algorithm should we use to find the topology in this framework?

Characteristics of DNN training traffic for DLRM

Data Parallel AllReduce Transfers

- Collective Communication (CC)
- Achieve some data distribution goals, in this case taking an average of the gradients located on all GPUs
- **Ring-AllReduce** generates a ring traffic pattern

Model Parallel Transfers

- Point-to-Point Communication (P2P)
- An operator placed on one GPU communicating with another operator located on another GPU

Challenge: finding a good network topology for both Collective and Point-to-Point transfers

• Degree (d) = 3, unidirectional

Collective Communication

Point-to-Point Communication

Challenge: finding a good network topology for both Collective and Point-to-Point transfers

• Degree (d) = 3, unidirectional

Collective Communication

Point-to-Point Communication Low Bandwidth!

Meeting the requirements of both Point-to-Point and Collective transfers

• Degree (d) = 3, unidirectional

Transfer Type	Characte ristics	Network Requirement
Collective Communication	Large, Sparse	Ample Bandwidth
Point-to-Point Communication	Small, Dense	Low hop-count

Key idea: mutate the traffic matrix

Collective Communications are **mutable**. Point-to-Point transfers are not mutable.

Splitting AllReduce traffic

Leverage the mutability of Collective Communication to achieve high bandwidth for CC & low hop-count for Point-to-Point transfers!

Key technique: Regular permutations

• n total accelerator, each with degree d

TopoOpt bounds the cluster diameter to $O(d \cdot \sqrt[d]{n})$

Physical interconnect of TopoOpt

TopoOpt uses optical switches

• Fully functional 12-node, degree 4 testbed integrated with NCCL

Evaluation

- We evaluate TopoOpt with large scale simulation and a small-scale prototype
- Artifact code can be found at http://TopoOpt.csail.mit.edu

Simulation – iteration time

• Training DNN on a dedicated cluster of 128 nodes, d = 4, with different available bandwidth

Simulation – Impact of All-to-All traffic

• Training DLRM model with different batch size

Simulation - tail completion time

 Running several jobs together on a 432 node, d = 8, 100Gbps TopoOpt system, compared to several other options

TopoOpt **isolates the jobs perfectly by design**, and achieves up to **3.4x** faster 99%-tile latency compared to cost-equivalent Fat-trees

Testbed result

• We implemented a prototype for TopoOpt on a 12-node testbed, with Nvidia A100 GPUs and 4 x 25Gbps HPE NICs connected to an optical patch panel

Testbed Photo

TopoOpt matches the performance of an ideal full-bisection bandwidth fabric

Summary

TopoOpt: the first system to co-optimize DNN training with demand-aware network topology

Leverages the mutability of DNN training traffic to search and construct the best topology

Achieves up to 3.4x faster 99%-ile training iteration time compared to cost equivalent Fat-trees

Future work and upcoming talks

- LLM with 3D parallelism and Mixture of Expert (MoE) layers:
 - Disjoint traffic across different parallelisms
 - Non-uniform, many-to-many dense communication
- Utilizing fast-reconfigurable optical switches to build efficient all-to-all communication primitive
- Network infrastructure for other popular ML workload RLHF, RAG, fine-tuning and inferencing for LLMs and other DNNs