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• The growth of large DNN models creates demands efficient distributed DNN training systems

The era of large deep neural networks (DNNs) 

GPT
Large Language Model

Deep Learning Recommendation Model
Recommendation Model

DALL.E
Image Generation Model
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• The Fat-Tree network topology forms the basis 
of today’s training cluster

• Traffic oblivious fabric the provides uniform, 
full-bisection bandwidth between server pairs

• Ideal when the workload is unpredictable and 
consists mostly of short transfers

• Full-bisection networks are not the best 
network topology for DNN training!

State-of-the-art training clusters

Fat-Tree network topology [1]
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Network is becoming a bottleneck and getting too expensive
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• Network Overhead: the amount of time spent 
on communication only

Number of GPU servers
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• Network Cost: total cost of network switches 
and transceivers at 400Gbps



Previous work on distributed DNN training optimization 
does not consider physical topology

Parallelization strategy
Alpa [OSDI ’22]  

Hyper parameters
ASHA [MLSys ‘20] 

Schedulers
Themis [NSDI ‘20]

Collective communication
TE-CCL [SIGCOMM ‘25]

Compression and encoding 
THC [NSDI ’24]

Asynchronous transmit
DC-ASGD [PMLR ‘17] 

Network topology
?

Computation
+

Communication
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DNNs training traffic has different properties 

(a) Vision
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DNNs training traffic has different properties 

(a) Vision
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…
• Key observations:

1. Traffic patterns do not change across training iterations
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DNNs training traffic has different properties 

(b) Image processing (c) Object Tracking (d) Speech Recognition
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• Key observations:
1. Traffic patterns do not change across training iterations
2. Traffic patterns are model-dependent
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Reconfiguring physical network topology

Topology A Topology A Topology A
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Reconfiguring physical network topology

Topology A Topology B Topology C
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• Ideally, we could change the topology according to the instantaneous demand

• However, this is challenging with today’s technology
• Existing commercially available solutions that scales to thousands of ports are not fast enough for 

many DNN models

• In this presentation, we focus on a one-shot reconfiguration policy
• Find one topology for the entire duration of each training job

1 ns 1 μs 1 ms 1 s Time 
interval

3D MEMS
~10 ms

Sirius [SIGCOMM’20]
~1 ns

Training iteration time 
10 - 10000ms 

Reconfiguring physical network topology – how often?
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• The configuration space is huge!

DNN Parallelization Strategy
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Search space 
explodes!

Missing potential solutions!

Co-optimization challenge: Huge search space for 
optimal DNN training 
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Parallelization Strategy Search

Traffic Demand 
Extraction

Topology 
and routing

Parallelization 
strategy

TopologyFinder
Algorithm

Topology Optimization

Strategy Optimization

Alternating optimization framework to co-optimize 
DNN parallelization strategy and network topology
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Traffic Demand 
Extraction

TopologyFinder
Algorithm

Topology Optimization

Alternating optimization framework to co-optimize 
DNN parallelization strategy and network topology

What algorithm should we use to find the topology in this framework? 
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Characteristics of DNN training traffic for DLRM 

Model Parallel Transfers

• Point-to-Point Communication (P2P)
• An operator placed on one GPU communicating 

with another operator located on another GPU

Data Parallel AllReduce Transfers 

• Collective Communication (CC)
• Achieve some data distribution goals, in this case 

taking an average of the gradients located on all GPUs

• Ring-AllReduce generates a ring traffic pattern
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8 hops!

Challenge: finding a good network topology for both Collective 
and Point-to-Point transfers

Point-to-Point 
Communication 

Collective 
Communication 

• Degree (d) = 3, unidirectional = One link
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Challenge: finding a good network topology for both Collective 
and Point-to-Point transfers

Point-to-Point 
Communication 

Collective 
Communication 

• Degree (d) = 3, unidirectional
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Low Bandwidth!
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Meeting the requirements of both Point-to-Point and Collective 
transfers

• Degree (d) = 3, unidirectional

Transfer Type
Characte
ristics

Network 
Requirement 

Large, 
Sparse

Ample 
Bandwidth

Small, 
Dense

Low hop-count 

Collective 
Communication 

Point-to-Point 
Communication
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Key idea: mutate the traffic matrix

Collective Communications are mutable. 
Point-to-Point transfers are not mutable.
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Splitting AllReduce traffic
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Leverage the mutability of Collective Communication to achieve high 
bandwidth for CC & low hop-count for Point-to-Point transfers!
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Key technique: Regular permutations

• The possible set of 𝛿 are the positive integers 
less than 𝑛, such that gcd 𝛿, 𝑛 = 1

• Among all possible 𝛿 distances, choose a set 
of them within the degree to minimize the 
cluster diameter 

• Later work relax the constraints to any 
connected circulant graph
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Regular permutations – every server connects 
to another one with a fixed distance 𝛿

Irregular permutations

𝛿 = 1 𝛿 = 5

-> 𝑶 𝒏 search space!

𝐎(𝒏!) different permutationsTopoOpt bounds the cluster diameter to   𝑂(𝑑 ⋅ ! 𝑛)

• 𝑛 total accelerator, each with degree 𝑑



d Optical Switches

Physical interconnect of TopoOpt

d interfaces
“Degree” Server1 Server2 Servern

Optical Switch1 Optical Switch2 Optical Switchd-1 Optical Switchd

Servern-1

n ports
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TopoOpt uses optical switches
• Fully functional 12-node, degree 4 testbed integrated with NCCL 
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d = 8 
interfaces Server1 Server2 Servern

Optical Switch1 Optical Switch2 Optical Switchd-1 Optical Switchd

Servern-1

n = 432

𝑩 = 𝟏𝟎𝟎 𝑮𝒃𝒑𝒔

TopoOpt

𝒅×𝑩
= 𝟖𝟎𝟎𝑮𝒃𝒑𝒔

Ideal Switch

Fat-Tree

Sn-3 Sn-2 Sn-1 SnS1 S2 S3 S4

Costs 3.4x!

Sn-1 SnS2S1

Evaluation

𝟐𝟎𝟎𝑮𝒃𝒑𝒔

• We evaluate TopoOpt with large scale simulation and a small-scale prototype

• Artifact code can be found at http://TopoOpt.csail.mit.edu

Ideal n-port switch

http://topoopt.csail.mit.edu/
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• Training DNN on a dedicated cluster of 128 nodes, d = 4, with different available bandwidth

CANDLE DLRM

2

20

200

10 100

Tr
ai

ni
ng

 I
te

ra
tio

n 
Ti

m
e 

(s
)

0.03

0.3

3

10 100
Link Bandwidth (Gbps) Link Bandwidth (Gbps)

Tr
ai

ni
ng

 I
te

ra
tio

n 
Ti

m
e 

(s
)

TopoOpt Fat-treeIdeal Switch

2004025 2004025

Simulation – iteration time



Slide  26

• Training DLRM model with different batch size

Simulation – Impact of All-to-All traffic

0

0.2

0.4

0.6

0.8

64 128 256 512 1024 2048
0

0.1
0.2
0.3
0.4
0.5
0.6

64 128 256 512 1024 2048
Batch size per GPU Batch size per GPU

(a) d = 4 (b) d = 8

It
er

at
io

n 
Ti

m
e 

(s
)

It
er

at
io

n 
Ti

m
e 

(s
)

3% 5% 10% 20% 40%
Ratio of all-to-all to AllReduce Ratio of all-to-all to AllReduce

80% 3% 5% 10% 20% 40% 80%



Slide  27

• Running several jobs together on a 432 node, d = 8, 100Gbps TopoOpt system, compared to 
several other options
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Simulation – tail completion time

TopoOpt isolates the jobs perfectly by design, and achieves up to 3.4x faster 
99%-tile latency compared to cost-equivalent Fat-trees
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• We implemented a prototype for TopoOpt on a 12-node testbed, with Nvidia A100 GPUs and 4 x 
25Gbps HPE NICs connected to an optical patch panel

Testbed result

A100 GPU 
Servers

Patch 
Panel

Time to Accuracy, VGG19Testbed Photo

TopoOpt matches the performance of an ideal full-bisection bandwidth fabric
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TopoOpt: the first system to co-optimize DNN training with 
demand-aware network topology

Leverages the mutability of DNN training traffic to search and 
construct the best topology

Achieves up to 3.4x faster 99%-ile training iteration time 
compared to cost equivalent Fat-trees
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Summary



• LLM with 3D parallelism and Mixture of Expert (MoE) layers:
• Disjoint traffic across different parallelisms
• Non-uniform, many-to-many dense communication

• Utilizing fast-reconfigurable optical switches to build efficient all-to-all 
communication primitive

• Network infrastructure for other popular ML workload – RLHF, RAG, fine-tuning 
and inferencing for LLMs and other DNNs

Future work and upcoming talks
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