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The era of large deep neural networks (DNN's)

Tell me about yourself in two sentences

| am ChatGPT, a highly advanced language

model developed by OpenAl. My primary
function is to assist users by generating human-
like responses and engaging in conversations on

a wide range of topics.

GPT Deep Learning Recommendation Model DALL.E
Large Language Model Recommendation Model Image Generation Model

* The growth of large DNN models creates demands efficient distributed DNN training systems




State-of-the-art training clusters

* The Fat-Tree network topology forms the basis
of today’s training cluster

» Traffic oblivious fabric the provides uniform,
full-bisection bandwidth between server pairs

» Ideal when the workload is unpredictable and
consists mostly of short transfers

Fat-Tree network topology [1]

e Full-bisection networks are not the best
network topology for DNN training!

[1] Al-Fares et al., A Scalable, Commodity Data Center Network Architecture, SIGCOMM ‘08



Network is becoming a bottleneck and getting too expensive

* Network Overhead: the amount of time spent « Network Cost: total cost of network switches
on communication only and transceivers at 400Gbps
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Previous work on distributed DNN training optimization
does not consider physical topology

Compression and encoding Schedulers
THC [NSDI 24] Themis [NSDI 20]

Asynchronous transmit Parallelization strategy
DC-ASGD [PMLR 17] Alpa [OSDI 22]

Collective communication Hyper parameters
TE-CCL [SIGCOMM "25] ASHA [MLSys '20]

Network topology
7
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DNNs training traffic has different properties
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DNNs training traffic has different properties
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» Key observations:

1. Traffic patterns do not change across training iterations
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DNNs training traffic has different properties
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» Key observations:

1. Traffic patterns do not change across training iterations
2. Traffic patterns are model-dependent




Reconfiguring physical network topology
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Reconfiguring physical network topology
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Reconfiguring physical network topology - how often?

 Ideally, we could change the topology according to the instantaneous demand

* However, this is challenging with today’s technology

» Existing commercially available solutions that scales to thousands of ports are not fast enough for
many DNN models

Sirius [SIGCOMM™20] 3D MEMS Training iteration time
~1ns ~10 ms 10-10000ms
® ® :
1ns 1 pus 1ms 1s Time
interval

» In this presentation, we focus on a one-shot reconfiguration policy
* Find one topology for the entire duration of each training job




Co-optimization challenge: Huge search space for
optimal DNN training

* The configuration space is huge!
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DNN Parallelization Strategy
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Alternating optimization framework to co-optimize
DNN parallelization strategy and network topology

Strategy Optimization

Parallelization Strategy Search

Parallelization Topology
strategy and routing
Traffic Demand TopologyFinder
Extraction Algorithm
Topology Optimization

T P



Alternating optimization framework to co-optimize
DNN parallelization strategy and network topology

Traffic Demand TopologyFinder
Extraction Algorithm
Topology Optimization

What algorithm should we use to find the topology in this framework?
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Characteristics of DNN training traffic for DLRM

Data Parallel AllReduce Transfers

e (Collective Communication (CC)

* Achieve some data distribution goals, in this case
taking an average of the gradients located on all GPUs

* Ring-AllReduce generates a ring traffic pattern

Model Parallel Transfers

* Point-to-Point Communication (P2P)

— * Anoperator placed on one GPU communicating
with another operator located on another GPU

O 5 10 15




Challenge: finding a good network topology for both Collective
and Point-to-Point transfers
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* Degree (d) = 3, unidirectional
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Challenge: finding a good network topology for both Collective
and Point-to-Point transfers

Low Bandwidth!

* Degree (d) = 3, unidirectional
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Meeting the requirements of both Point-to-Point and Collective
transfers

* Degree (d) = 3, unidirectional
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Key idea: mutate the traffic matrix

Collective Communications are mutable.
Point-to-Point transfers are not mutable.
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Splitting AllReduce traffic

Leverage the mutability of Collective Communication to achieve high
bandwidth for CC & low hop-count for Point-to-Point transfers!




Key technigue: Regular permutations

* n total accelerator, each with degree d

Among all possibl
of them within t
luster diameter

TopoOpt bounds the cluster diameterto 0(d - i/n)




Physical interconnect of TopoOpt

d Optical Switches

A




TopoOpt uses optical switches

 Fully functional 12-node, degree 4 testbed integrated with NCCL
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Fvaluation

* We evaluate TopoOpt with large scale simulation and a small-scale prototype

 Artifact code can be found at http://TopoOpt.csail.mit.edu

Costs 3.4x!

Ideal n-port switch
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http://topoopt.csail.mit.edu/

Simulation - iteration time

* Training DNN on a dedicated cluster of 128 nodes, d = 4, with different available bandwidth
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Simulation - Impact of All-to-All traffic

* Training DLRM model with different batch size

Ratio of all-to-all to AllReduce Ratio of all-to-all to AllReduce
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Simulation - tail completion time

* Running several jobs together on a 432 node, d = 8, 100Gbps TopoOpt system, compared to
several other options
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TopoOptisolates the jobs perfectly by design, and achieves up to 3.4x faster

99%-tile latency compared to cost-equivalent Fat-trees
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Testbed result

* We implemented a prototype for TopoOpt on a 12-node testbed, with Nvidia A100 GPUs and 4 x
25Gbps HPE NICs connected to an optical patch panel
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TopoOpt matches the performance of an ideal full-bisection bandwidth fabric




Summary

Optical Switch, Optical Switchy
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Future work and upcoming talks

e LLM with 3D parallelism and Mixture of Expert (MoE) layers:
* Disjoint traffic across different parallelisms
* Non-uniform, many-to-many dense communication

 Utilizing fast-reconfigurable optical switches to build efficient all-to-all
communication primitive

* Network infrastructure for other popular ML workload - RLHF, RAG, fine-tuning

and inferencing for LLMs and other DNNs




