

Shale: A Practical, Scalable Oblivious Reconfigurable Network

Daniel Amir^{*}, Tegan Wilson^{*}, Nitika Saran^{*}, Robert Kleinberg^{*}, Vishal Shrivastav[†], **Hakim Weatherspoon^{*}**

*Cornell University [†]Purdue University

Reconfigurable Networks Workshop

June 2, 2025

Originally presented at SIGCOMM 2024

Can we design datacenter networks that use only circuit switches?

Oblivious Reconfigurable Networks (ORNs)

A Fundamental tradeoff:

• Pareto-optimal for oblivious designs¹

²Mellette et al., SIGCOMM 2017 ³Shrivastav et al., NSDI 2019 ⁴Amir et al, SIGCOMM 2024 ⁵Ballani et al, SIGCOM³M 2020

Existing ORNs: Rotornet, Shoal, Sirius

- Schedule is a round-robin
- Send via an intermediate node
 - Valiant Load Balancing (VLB)

Existing ORNs: Rotornet, Shoal, Sirius

- Schedule is a round-robin
- Send via an intermediate node
 - Valiant Load Balancing (VLB)
- Throughput of at least ½ of line rate, regardless of traffic
- Latency is O(N), so scaling is poor

Existing ORNs: Rotornet, Shoal, Sirius

- Schedule is a round-robin
- Send via an intermediate node
 - Valiant Load Balancing (VLB)
- Throughput of at least ½ of line rate, regardless of traffic
- Latency is O(N), so scaling is poor
 - After first hop, you may need to wait for an entire round-robin.
- For a 100,000-server datacenter and 5ns timeslots, latency is 500 μs
 - Also requires multiple GB of on-chip memory
- Can we do better?

Our Contributions

- Shale: a new ORN design that supports tens of thousands of nodes.
- Orders of magnitude better latency and memory requirements than existing designs at these scales
- New schedules bring tunable tradeoff between throughput and latency
 - Each tradeoff is Pareto optimal for ORNs!
- Enabled by a new congestion control
- Optimized FPGA-based hardware implementation (Session #4)
- Competitive for ML workloads (Session #7)
- Semi-oblivious (Session #1)
- Supports interleaving to combine multiple tunings

Shale Schedule and Routing

- Generalization of existing round-robin design
- Each node participates in h shorter round robins
 - Each round robin has just $\sqrt[h]{N}$ nodes

UN

Shale Schedule (*h*=2)

Shale Schedule (*h*=2)

Shale Schedule and Routing

- Generalization of existing round-robin design
- Each node participates in \boldsymbol{h} shorter round robins
 - Each round robin has just $\sqrt[h]{N}$ nodes
- Direct paths between nodes are now h hops long
- Still use VLB

Shale Schedule (*h*=2)

Shale Schedule and Routing

- Generalization of existing round-robin design
- Each node participates in h different round robins
 - Each round robin has just $\sqrt[h]{N}$ nodes
- Direct paths between nodes are now h hops long
- Still use VLB
- Latency is better! Now $O(h^{\frac{h}{\sqrt{N}}})$
- Throughput is worse. Now $\frac{1}{2h}$

Comparison for 100,000 nodes

Comparison for 100,000 nodes

Each tradeoff is Pareto optimal for ORNs!

Optimal Oblivious Reconfigurable Networks: Summary

- What are the best tradeoffs possible for ORNs?
 - For an ORN that can <u>sustain a given throughput</u> for all traffic patterns, what is the <u>lowest possible worst-case latency</u>?
- We have found:
 - A lower bound (through theoretical analysis of ORNs)
 - An upper bound (by creating and analyzing ORN designs)
- These bounds are tight!
 - STOC 2022
- Our upper bound is based in part on a formalization of Shale's schedule, proving that **Shale is a Pareto optimal ORN**
 - SIGCOMM 2024, STOC 2022

Queuing in Shale

Queuing in Shale

- ORNs pose unique challenges
 - Queuing has a large impact queues empty slower than line rate
 - Each flow uses a huge number of paths (O(N) due to VLB)
- Existing ORN designs use an elegant hop-by-hop approach
- More difficult for scalable ORNs with path lengths >2
 - Due to multi-hop paths, congestion can occur far from both source and dest.
- Two types of congestion:
 - Path collision congestion
 - Egress congestion

Addressing path collisions: spray-short

Addressing egress congestion: hop-by-hop

- When a node sends a cell to an intermediate node, it stops sending future cells along that path until it receives a corresponding token
- Once it forwards the cell, the intermediate node also sends back a token

- Limits the number of cells queuing for the same destination at any node
- Deadlock-free!

Testing our congestion control mechanisms

- Packet-level simulations of Shale with 10,000 nodes
- Simulation parameters:
 - Cell payload: 244 B
 - New timeslot every 5.632 ns
 - Propagation delay: 500 ns
- Tested various congestion control mechanisms
 - Our congestion control (spray-short, hop-by-hop, and HBH-spray)
 - In-network prioritization of short flows (prio)
 - Receiver-driven, both alone and with packet trimming (RD and NDP respectively)
 - Idealized clairvoyant sender-driven congestion control (ISD)

Short flow workload — N=10,000

Short flow workload — N=10,000

Implementing Shale

- We implemented a prototype based on an FPGA NIC
- Added several optimizations to reduce memory requirements

Summary

- Shale is a new ORN design that supports tens of thousands of nodes.
- Orders of magnitude better latency and memory requirements than existing designs at these scales
- New schedules bring tunable tradeoff between throughput and latency
 - Each tradeoff is Pareto optimal for ORNs!
- Enabled by a new congestion control
- Optimized FPGA-based hardware implementation (Session #4)
- Competitive for ML workloads (Session #7)
- Semi-oblivious (Session #1)
- Supports interleaving to combine multiple tunings

Future work

- Optimized ORNs for highly predictable workloads (e.g. machine learning model training)
- Semi-oblivious ORNs which adjust their schedule periodically to optimize for time-stable patterns in datacenters
- Finding a solution for in-network computing in ORNs

Summary of Publications

• Optimal Oblivious Reconfigurable Networks

Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal. **STOC 2022**.

- Extending Optimal Oblivious Reconfigurable Networks to all N Tegan Wilson, Daniel Amir, Vishal Shrivastav, Hakim Weatherspoon, and Robert Kleinberg. APOCS 2023.
- Breaking the VLB Barrier: Improving Oblivious Reconfigurable Networks with High Probability

Tegan Wilson, Daniel Amir, Nitika Saran, Vishal Shrivastav, Robert Kleinberg, and Hakim Weatherspoon. **STOC 2024**.

- Shale: A Practical, Scalable Oblivious Reconfigurable Network Daniel Amir, Tegan Wilson, Nitika Saran, Robert Kleinberg, Vishal Shrivastav, and Hakim Weatherspoon. SIGCOMM 2024.
- Semi-Oblivious Reconfigurable Datacenter Networks
 Nitika Saran, Daniel Amir, Tegan Wilson, Robert Kleinberg, Vishal Shrivastav, and Hakim Weatherspoon. HotNets 2024.

Thank you!

Nitika Saran

Tegan Wilson

Robert Kleinberg

Vishal Shrivastav

Hakim Weatherspoon

