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Can we design datacenter networks that
use only circuit switches?



Oblivious Reconfigurable Networks (ORNs)

A Fundamental tradeoff:

 Pareto-optimal for oblivious designs!

LAmir et al, STOC 2022
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Existing ORNs: Rotornet, Shoal, Sirius

e Schedule is a round-robin

 Send via an intermediate node
 Valiant Load Balancing (VLB)
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Existing ORNs: Rotornet, Shoal, Sirius

e Schedule is a round-robin

 Send via an intermediate node
 Valiant Load Balancing (VLB)

* Throughput of at least 7 of line rate, regardless of traffic
 Latency is O(N), so scaling is poor
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Existing ORNs: Rotornet, Shoal, Sirius

e Schedule is a round-robin

 Send via an intermediate node
 Valiant Load Balancing (VLB)

* Throughput of at least 7 of line rate, regardless of traffic

 Latency is O(N), so scaling is poor
» After first hop, you may need to wait for an entire round-robin.

* For a 100,000-server datacenter and 5ns timeslots, latency is 500 pus
* Also requires multiple GB of on-chip memory

e Can we do better?



Our Contributions

* Shale: a new ORN design that supports tens of thousands of nodes.

* Orders of magnitude better latency and memory requirements than
existing designs at these scales

* New schedules bring tunable tradeoff between throughput and latency
e Each tradeoff is Pareto optimal for ORNs!

* Enabled by a new congestion control

* Optimized FPGA-based hardware implementation (Session #4)
* Competitive for ML workloads (Session #7)

e Semi-oblivious (Session #1)

e Supports interleaving to combine multiple tunings



Shale Schedule and Routing

* Generalization of existing round-robin design

* Each node participates in h shorter round robins
e Each round robin has just YN nodes
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Shale Schedule (h=2)




Shale Schedule (h=2)




Shale Schedule and Routing

* Generalization of existing round-robin design

* Each node participates in h shorter round robins
e Each round robin has just YN nodes

* Direct paths between nodes are now h hops long
e Still use VLB



Shale Schedule (h=2)




Shale Schedule and Routing

* Generalization of existing round-robin design

* Each node participates in h different round robins
e Each round robin has just YN nodes

* Direct paths between nodes are now h hops long
e Still use VLB

« Latency is better! Now O(h/N)
* Throughput is worse. Now 1/,



Comparison for 100,000 nodes
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Comparison for 100,000 nodes
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Each tradeoff is Pareto optimal for ORNs!

Throughput vs Latency
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Optimal Oblivious Reconfigurable Networks:
Summary

 What are the best tradeoffs possible for ORNs?

e For an ORN that can sustain a given throughput for all traffic patterns, what is
the lowest possible worst-case latency?

* We have found:
* A lower bound (through theoretical analysis of ORNs)
* An upper bound (by creating and analyzing ORN designs)

* These bounds are tight!
* STOC 2022

* Our upper bound is based in part on a formalization of Shale’s
schedule, proving that Shale is a Pareto optimal ORN

* SIGCOMM 2024, STOC 2022



Queuing in Shale




Queuing in Shale

* ORNs pose unique challenges
* Queuing has a large impact — queues empty slower than line rate
* Each flow uses a huge number of paths (O(N) due to VLB)

* Existing ORN designs use an elegant hop-by-hop approach
* More difficult for scalable ORNs with path lengths >2

* Due to multi-hop paths, congestion can occur far from both source and dest.

* Two types of congestion:
e Path collision congestion
e Egress congestion



Addressing path collisions: spray-short




Addressing egress congestion: hop-by-hop

* When a node sends a cell to an intermediate node, it stops sending
future cells along that path until it receives a corresponding token

* Once it forwards the cell, the intermediate node also sends back a token

€9

* Limits the number of cells queuing for the same destination at any node
e Deadlock-free!



Testing our congestion control mechanisms

* Packet-level simulations of Shale with 10,000 nodes

e Simulation parameters:
* Cell payload: 244 B
* New timeslot every 5.632 ns
* Propagation delay: 500 ns

* Tested various congestion control mechanisms
e Our congestion control (spray-short, hop-by-hop, and HBH-spray)
* In-network prioritization of short flows (prio)

* Receiver-driven, both alone and with packet trimming (RD and NDP respectively)
* |dealized clairvoyant sender-driven congestion control (ISD)
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99.99% buffer occupancy (cells)

99.9% FCT (size-normalized)

Short flow workload — N=10,000
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Heavy tailed workload — N=10,000
h=2 (log scale) h=4 (log scale)

=108 108
()
(@)
= 10° 105
(@]
c
a 10° 104
-]
3 103 3
s 10 10
qu—J 2 2
= 10 10
o)
x 10’ 10’
(o]
(o]
O)' 100 T T T 100 T T T
(o))
e
N\
A\ T\
B 10° 10° 4
N E
£ 10 10*
: §
b 10° 10°
N 5
L ., 5 ]
= 10 102 4
Q | p—a— =
= 10° 10" 4
o ]
g 100 T T T T T T T T 100 | T T T T T T T T T
o 6[)‘\& 6‘8& W S\%\@“\%e W N4 Q*b‘\& '\‘3& 6“\& 66\& W “\%\6‘\%@ N W
6/ b"(ch Y\% '\ b‘z 6, 6 b(' '\6/ b" 66\(\ '\ b(, '\6/ 6
1 Flow size 1°  Flow size
—&— none —#— hop-by-hop

—4— spray-short =~ —m— HBH+ spray




Heavy tailed workload — N=10,000
h=4 (log scale)
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Implementing Shale

* We implemented a prototype based on an FPGA NIC

* Added several optimizations to reduce memory requirements
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Summary

* Shale is a new ORN design that supports tens of thousands of nodes.

* Orders of magnitude better latency and memory requirements than
existing designs at these scales

* New schedules bring tunable tradeoff between throughput and latency
e Each tradeoff is Pareto optimal for ORNs!

* Enabled by a new congestion control

* Optimized FPGA-based hardware implementation (Session #4)
* Competitive for ML workloads (Session #7)

e Semi-oblivious (Session #1)

e Supports interleaving to combine multiple tunings



Future work

e Optimized ORNs for highly predictable workloads (e.g. machine
learning model training)

* Semi-oblivious ORNs which adjust their schedule periodically to
optimize for time-stable patterns in datacenters

* Finding a solution for in-network computing in ORNs
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Thank you!
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