Breaking the VLB Barrier *Randomized Routing with a Single Spraying Hop*

Tegan Wilson

Bobby Kleinberg

Daniel Amir Vishal Shrivastav Nitika Saran Hakim Weatherspoon

STOC 2024

Does Reconfigurable Networking Really Need Spraying?

Routing paths in reconfigurable networks are composed of *direct hops* and *spraying hops*.

Direct: one step closer to the destination.

Spraying: random step to balance load.

Spraying uses bandwidth inefficiently.

Can we avoid or reduce it?

Image credit: Denish C (Lice

(License: CC BY-NC-ND 2.0)

The Oblivious Reconfigurable Network Abstraction

- N network nodes.
- Discrete time slots 0, 1, 2, ...
- Nodes can send to/receive from one neighbor per time slot.
 - d>1 neighbors reduces to this
- Connection schedule = sequence of permutations $\sigma_0, \sigma_1, \sigma_2, ...$
 - At time t, node i can send to $\sigma_t(i)$.

The Oblivious Reconfigurable Network Abstraction

- N network nodes.
- Discrete time slots 0, 1, 2, ...
- Nodes can send to/receive from one neighbor per time slot.
 - d>1 neighbors reduces to this
- Connection schedule = sequence of permutations $\sigma_0, \sigma_1, \sigma_2, ...$
 - At time t, node i can send to $\sigma_t(i)$.

Routing Schemes

- Routing Scheme = probability distribution over paths for each (source, destination, starting time).
- ε -balanced: \forall permutation demand matrix, $\frac{\max \text{ load}}{\operatorname{avg load}} \leq 1 + \varepsilon$.
 - Here "load" means "expected flow on a link in a specific time slot".
- Latency (L): number of time slots from source to destination.
- Hop count (h): number of physical links traversed.

Valiant Load Balancing

- Used in RotorNet, Shoal, Sirius, Shale.
- Spraying hops = shortest path from source to random intermediate node.
- **Direct hops** = shortest path from intermediate to destination.
- Converts routing that is ε-balanced for uniform demands to ε-balanced for all permutation demands.
- BUT... results in 2x latency and 2x hop-count.
- Is this doubling really necessary?

Yes, in some other network design settings. (Keslassy, Chang, McKeown, Lee 2005; Babaioff & Chuang 2007; AWSWKA 2022)

Why RotorNet/Shoal/Sirius Need VLB

- Suppose demand is a random permutation matrix, Π .
- Routing from source a to destination $\Pi(a)$ on a direct hop is only possible if $\sigma_t(a) = \Pi(a)$, which happens with probability 1/N.
- So, average hop-count $\gtrsim 2$ is unavoidable.
- Impossibility is because the connection schedule is demand oblivious, holds even if routing is demand-aware.
- Analogue of this reasoning for multi-hop routing?

The "Speed of Light" Barrier: $L \ge \frac{g}{e} N^{1/g}$

- From a given source, how many nodes reachable in latency *L* and hop-count *g*?
- At most

$$\binom{L}{0} + \binom{L}{1} + \dots + \binom{L}{g} \le \left(\frac{eL}{g}\right)^g$$

- So, point-to-point reachability in $\leq g$ hops requires $L \geq \frac{g}{e} N^{1/g}$.
- Shale at level g achieves $L = 2gN^{1/g}$, h = 2g

Necessity of Additive Stretch 1

- The link from a to $\sigma_t(a)$ belongs to a g-hop path only if $\Pi(a)$ is reachable from $\sigma_t(a)$ in latency L 1 and hop-count g 1.
- The number of such destinations is $\binom{L-1}{0} + \dots + \binom{L-1}{g-1} \le \left(\frac{eL}{g}\right)^{g-1}$.
- When $L = O(gN^{1/g})$ this is $O(N^{1-1/g})$.
- Pr(direct hop leaving source a at time t) = $O(N^{-1/g})$.
- So, average hop count $h \gtrsim g + 1$ unavoidable when $L = O(gN^{1/g})$.
- Again, this impossibility holds whenever connection schedule is demand oblivious, even if routing is demand aware.

Sufficiency of Additive Stretch 1

Theorem (WASKSW'24): For all $\varepsilon > 0, g \ge 1$, for infinitely many N, there exists a probability distribution on N-node ORN designs with:

- max latency $L = O(gN^{1/g})$
- max hop count h = g + 1
- \forall permutation demands, Pr(not ε -balanced) < $\frac{1}{N^{100}}$

TL;DR: If you're OK with negligible probability of violating load balance, a single spraying hop is all you need! VLB is overkill.

Contrast with AWSWKA'22: if load balance holds with probability 1, then $h \gtrsim 2g$.

Key Idea #1: Shale in vector spaces

- Identify nodes with vectors in \mathbb{F}_p^g .
- Group time slots into phases (round robins) of length p-1.
- For $v \in \mathbb{F}_p^g$, a v-phase starting at time t + 1 uses $\sigma_{t+s}(a) = a + sv$.
- For basis $B \subset \mathbb{F}_p^g$, a *B*-epoch consists of *v*-phases for each $v \in B$.
- Shale's connection schedule is made up of *B*-epochs where *B* = standard basis.

Key Idea #2: Constellations

- A basis defines a unique direct path. Instead use an overcomplete set of vectors for redundancy.
- **Constellation** = set of vectors in \mathbb{F}_p^g , any g of which form a basis.
- E.g. Vandermonde vectors $v = (1, x, x^2, ..., x^{g-1})$.
- Connection schedule: sequence of v-phases for v ranging over a constellation of size C(g + 1), where $C = O(\log n)$.
- Routing scheme:
 - randomly sample g + 1 phases, one from each block of length C.
 - Take at most 1 hop in each selected phase (and exactly one in first and last).

Key Idea #3: Global Random Shuffle

- Choose the bijection $\{nodes\} \leftrightarrow \mathbb{F}_p^g$ uniformly at random.
- Limits an adversary's ability to correlate the demand matrices with the connection schedule and routing scheme.

Some intuitions:

- Unlike in VLB, location after spraying is not uniformly random.
- Start of direct hop sequence correlates with destination!
- To still guarantee that load is ε -balanced by direct hops, incorporate two extra sources of randomness: timing of phases + global shuffle.

Summary: Given a latency bound of $\tilde{O}(gN^{1/g})$ for integer g

Goal	Average Hop Count	Congestion	
Full Network Connectivity (lower bound)	g	—	Naïve counting
Uniform Multicommodity Flow	g	g	[AWSWKA'22]
Oblivious Routing (prob. 1)	2 <i>g</i>	2g	[AWSWKA'22] (uses VLB)
Oblivious Routing (w.h.p.)	g+1	$\begin{array}{c} g+1+\delta\\ \forall \delta > 0 \end{array}$	This work
Demand-Aware Routing (prob. 1)	g+1	$\begin{array}{c} g+1+\delta\\ \forall \delta>0 \end{array}$	This work

Two Closing Thoughts

- Replacing VLB with a single spraying hop seems useful in general. Maybe we haven't found the killer app yet.
- 2. A key to breaking the VLB barrier: randomizing network topology independently of traffic demands. ... an unexpected side benefit of reconfigurability.