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Most data-centers are modeled after Clos networks
[Singh et al. 15, Greenberg et al. 15, Gangidi et al. 24, Qian et al. 24] 
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Most data-centers are modeled after Clos networks
[Singh et al. 15, Greenberg et al. 15, Gangidi et al. 24, Qian et al. 24] 
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Characteristics of Clos networks [Clos 53] 

● N = number of servers per ToR switch
    = number of middle switches
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Characteristics of Clos networks [Clos 53] 

● N = number of servers per ToR switch
    = number of middle switches

● Uniform link capacities
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Data-center wish to closely satisfy flow demands …
[Ballani et al. 11, Lee et al. 14]

● Guaranteeing predictable bandwidth is desirable for most applications
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Data-center wish to closely satisfy flow demands …
[Ballani et al. 11, Lee et al. 14]

● Guaranteeing predictable bandwidth is desirable for most applications

… therefore, flow routing in data-center seeks to minimize 
congestion [Alizadeh et al. 14, Singla et al. 14, Namyar et al. 21]
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Characteristics of the minimum congestion routing problem

● Input: Set of flows; flow maps to source-destination pair and demand
○ Aggregate demand on any external link (between server and ToR) ≤ 1 
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Characteristics of the minimum congestion routing problem

● Input: Set of flows; flow maps to source-destination pair and demand
○ Aggregate demand on any external link (between server and ToR) ≤ 1 

● Solution: Routing for the flows, that is, assignment from flows to middle switches

● Objective: Minimize congestion, that is, maximum aggregate demand routed on 
any internal link (between ToR and middle switch)

Every flow satisfies its demand if and only if routing has congestion ≤ 1 
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Characteristics of the minimum congestion routing problem
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Characteristics of the minimum congestion routing problem
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Characteristics of the minimum congestion routing problem



17

With arbitrary flow splitting, minimizing congestion is easy
[Chiesa et al. 17]

● Theorem: For all sets of flows, uniformly splitting each flow demand over all 
source-destination paths yields a minimum congestion routing with congestion ≤ 1
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With arbitrary flow splitting, minimizing congestion is easy
[Chiesa et al. 17]

● Theorem: For all sets of flows, uniformly splitting each flow demand over all 
source-destination paths yields a minimum congestion routing with congestion ≤ 1

With splittable flows, every flow satisfies its demand



19

However, flows splitting has significantly deployability challenges
[Qureshi et al. 22, Gangidi et al. 24, Qian et al. 24]

● While there have been multiple proposal for implement splittable flows…
○ Examples: MPTCP [Raiciu et al. 2011], packet-spraying [Dixit et al. 2013]
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However, flows splitting has significantly deployability challenges
[Qureshi et al. 22, Gangidi et al. 24, Qian et al. 24]

● While there have been multiple proposal for implement splittable flows…
○ Examples: MPTCP [Raiciu et al. 2011], packet-spraying [Dixit et al. 2013]

● … none of them has been adopted in practice
○ Reasons: require deep changes to current protocols, unverified in large scale
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This talk
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This talk

● Question #1: Is the congestion of a minimum congestion routing of unsplittable 
flows ≤ 1 for all sets of flows? If not, how close to 1 is it?
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This talk

● Question #2: Is a minimum congestion routing of unsplittable flows computable in 
polynomial-time? If not, how well can it be approximated?

● Question #1: Is the congestion of a minimum congestion routing of unsplittable 
flows ≤ 1 for all sets of flows? If not, how close to 1 is it?
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Prior results on minimum congestion routing
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● In general networks, there are approximation algorithms that ensure worst-case 
congestion and approximation factor poly-logarithmic in size N of the network

Prior results on minimum congestion routing
[Raghavan and Tompson 87, Chakrabarti et al. 07] 

polylog( N )
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● In Clos networks, random ECMP ensures worst-case congestion and 
approximation factor poly-logarithmic in number N of the middle switches 

Prior results on minimum congestion routing
[Al-Fares et al. 08] 

polylog( N )…
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● In Clos networks, state-of-the-art heuristics ensure worst-case congestion and 
approximation factor of 2

Prior results on minimum congestion routing
[Melen and Turner 89, Al-Fares et al. 10] 

polylog( N )2 …

Possible
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What we know: worst-case congestion and approximation 
factor is between 1 and 2  

1 2 polylog( N )…

Possible
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What we show: worst-case congestion and approximation 
factor is between 1.5 and …  

● Result #1: (#1.1) Minimum congestion is ≥ 1.5. (#1.2) Furthemore, it is NP-hard to 
approximate minimum by factor < 1.5. 

1 2 polylog( N )1.5 …

Impossible Possible
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What we show: worst-case congestion and approximation 
factor is between 1.5 and …  

● Result #1: (#1.1) Minimum congestion is ≥ 1.5. (#1.2) Furthemore, it is NP-hard to 
approximate minimum by factor < 1.5. 

1 2 polylog( N )1.5 …

Impossible

● Implication: Special structure of Clos networks cannot avoid some flows obtaining 
≤ 2/3 of their demands

Possible



31

… 1.8

● Result #2: There is a polynomial-time algorithm that ensures congestion ≤ 1.8 for 
all sets of flows, and approximates minimum congestion by a factor ≤ 1.8

1 2 polylog( N )1.5 …

Impossible

1.8

Possible
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… 1.8

● Result #2: There is a polynomial-time algorithm that ensures congestion ≤ 1.8 for 
all sets of flows, and approximates minimum congestion by a factor ≤ 1.8

1 2 polylog( N )1.5 …

Impossible

1.8

● Implication: Known heuristics are not optimal

Possible
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What we show: in the online setting, worst-case congestion and 
approximation factor is at least 2

● Result #3: No online algorithm (even randomized) approximates minimum 
congestion by a factor < 2 

1 2

Online:

polylog( N )

Impossible
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What we show: in the online setting, worst-case congestion and 
approximation factor is at least 2

● Result #3: No online algorithm (even randomized) approximates minimum 
congestion by a factor < 2 

● Implication: There is a strict separation between online and offline settings

1 2

Online:

polylog( N )

Impossible
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Formal statement for limits to congestion and approximation
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● Lemma [Hwang 83]: For all sets of flows with demand 1, there is a routing with 
congestion 1, and such a routing can be found in polynomial-time  

Formal statement for limits to congestion and approximation
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● Lemma [Hwang 83]: For all sets of flows with demand 1, there is a routing with 
congestion 1, and such a routing can be found in polynomial-time  

● Theorem #1.1: There is a set of flows with demands 1 or 0.5 such that the 
minimum congestion is 1.5    

Formal statement for limits to congestion and approximation
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● Theorem #1.2: For a set of flows with demands 1 or 0.5, deciding if minimum 
congestion is ≤ 1 or 1.5 is NP-complete    

● Lemma [Hwang 83]: For all sets of flows with demand 1, there is a routing with 
congestion 1, and such a routing can be found in polynomial-time  

● Theorem #1.1: There is a set of flows with demands 1 or 0.5 such that the 
minimum congestion is 1.5    

Formal statement for limits to congestion and approximation
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Key idea for limits to congestion and approximation

● Lemma: For every routing of the tunnel gadget with congestion 1, there is a 
different middle switch at each input switch to which no flow is assigned   

1
1

1
1

1
1

Funnel gadget
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Routing with congestion 1 

1
1

1
1

1
1

Funnel gadget

Key idea for limits to congestion and approximation

● Lemma: For every routing of the tunnel gadget with congestion 1, there is a 
different middle switch at each input switch to which no flow is assigned   
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Proof hint for Theorem #1.1: Add demand 0.5 flows to funnel 
gadget such that all middle switches blocked

● Theorem #1.1: There is a set of flows with demands 1 or 0.5 such that the 
minimum congestion is ≥ 1.5    

1
1

0.5
1
1

0.5
1
1

0.5

1
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● Theorem #1.2: For a set of flows with demands 1 or 0.5, deciding if minimum 
congestion is ≤ 1 or 1.5 is NP-complete 

v3

e1

v1 e1

v2

v3 v4

e3

e2

Proof hint for Theorem #1.2: Establish a reduction from 
the 3-edge coloring problem
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Towards a 1.8-approximation algorithm that ensures congestion 1.8

● Linear program corresponding to multi-commodity flow relaxation is not helpful
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● Linear program corresponding to multi-commodity flow relaxation is not helpful

● Prior work suggests two combinatorial algorithms to build upon

Towards a 1.8-approximation algorithm that ensures congestion 1.8



45

Description of the Melen-Turner algorithm [Melen and Turner 89] 

Original network

1
x 1/ε  ε 
x 1/ε  ε 
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Description of the Melen-Turner algorithm [Melen and Turner 89] 

Original network

1
x 1/ε  ε 
x 1/ε  ε 

1. Build new network from original one; in new network, there are multiple copies of 
each ToR, with ≤ N flows per copy in decreasing of demands

1
ε 

… …

New network

ε 
ε 
ε 
ε 

ε 
ε 
ε 

x 1 
x 1 
x 1 
x 1 
x 1 

x 1 
x 1 
x 1 
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Description of the Melen-Turner algorithm [Melen and Turner 89] 

2. Find link-disjoint routing in new network

… …

…

…

…

Link disjoint routing in new network Routing in original network

1
x 1/ε  ε 
x 1/ε  ε 

1
ε 
ε 
ε 
ε 
ε 

ε 
ε 
ε 

x 1 
x 1 
x 1 
x 1 
x 1 

x 1 
x 1 
x 1 
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● Lemma: Melen-Turner algorithm is a 2-approximation algorithm, and returns a 
routing with congestion ≤ 2 for all sets of flows; these bounds are tight

Melen-Turner algorithm has worst-case congestion and 
approximation factor no better than 2

1
x 1/ε  ε 
x 1/ε  ε 

1
x 1/ε  ε 
x 1/ε  ε 

● Tight example:

Congestion 2 routing returned by algorithmCongestion 1 routing
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Description of the Sorted-Greedy algorithm [Al-Fares et al. 08] 

1. Assign flows in decreasing order of demands to minimum congestion paths

1
1

1
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Melen-Turner algorithm has worst-case congestion and 
approximation factor no better than 2

● Lemma: Sorted-greedy algorithm is a 2-approximation algorithm, and returns a 
routing with congestion ≤ 2 for all sets of flows; these bounds are tight

● Tight example:

1
1

1

Congestion 2 routing returned by algorithmCongestion 1 routing

1
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● Interpolate between the Melen-Turner and Sorted-Greedy algorithm, 

Key idea for the routing algorithm



52

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm, 

● Two-phase algorithm bridged by threshold C:

Key idea for the routing algorithm



53

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm, 

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with 
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Key idea for the routing algorithm
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● Interpolate between the Melen-Turner and Sorted-Greedy algorithm, 

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with 
congestion ≤ C

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without 
increasing congestion > C

Key idea for the routing algorithm
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● Interpolate between the Melen-Turner and Sorted-Greedy algorithm, 

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with 
congestion ≤ C

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without 
increasing congestion > C

● Theorem #2: If C = 1.8, then algorithm returns a routing with congestion ≤ 1.8 for 
all sets of flows

Key idea for the routing algorithm
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● Interpolate between the Melen-Turner and Sorted-Greedy algorithm, 

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with 
congestion ≤ C

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without 
increasing congestion > C

● Theorem #2: If C = 1.8, then algorithm returns a routing with congestion ≤ 1.8 for 
all sets of flows; however, it is not a 1.8-approximation algorithm

Key idea for the routing algorithm
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● Two-phase algorithm bridged by threshold C and lower bound L on OPT

○ Phase 1: Route a subset of the flows including all with demand > ⅓ x L via 
Melen-Turner algorithm with congestion ≤ C x L

A 1.8-approximation algorithm that guarantees congestion 1.8

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without 
increasing congestion > C x OPT

● Theorem #2: If C = 1.8, then algorithm is a 1.8-approximation algorithm, and 
returns a routing with congestion ≤ 1.8 for all sets of flows



58

Towards congestion-free data-center networks?
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● Question #1 (Virtual machine placement): What if we jointly place virtual machines 
in servers and route the flows between them?

Towards congestion-free data-center networks?
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● Question #2 (Multi-path routing): Does jointly route flows and divide their demands 
over a constant number of paths guarantee a congestion-free network?

Towards congestion-free data-center networks?

● Question #1 (Virtual machine placement): What if we jointly place virtual machines 
in servers and route the flows between them?
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1 2

Online:

polylog( N )

Conclusion

1 2 polylog( N )1.81.5 …

Offline:

Miguel Ferreira, maferrei@andrew.cmu.edu 
CMU, IST

Impossible

Impossible Possible


