
Minimum Congestion Routing of Unsplittable

Flows in Data-Center Networks

1

Miguel Ferreira
CMU, IST

Nirav Atre, Justine Sherry
CMU

Michael Dinitz
JHU

João Luís Sobrinho
 IST

2

Most data-centers are modeled after Clos networks
[Singh et al. 15, Greenberg et al. 15, Gangidi et al. 24, Qian et al. 24]

Folded Clos network

3

Most data-centers are modeled after Clos networks
[Singh et al. 15, Greenberg et al. 15, Gangidi et al. 24, Qian et al. 24]

Folded Clos network Unfolded Clos network

Unfolded around
symmetry axis

4

Middle
switches

Input ToR
switches

Output ToR
switches

Source
servers

Destination
servers

Characteristics of Clos networks [Clos 53]

5

Middle
switches

Input ToR
switches

Output ToR
switches

Source
servers

Destination
servers

Characteristics of Clos networks [Clos 53]

6

Characteristics of Clos networks [Clos 53]

● N = number of servers per ToR switch
 = number of middle switches

7

Characteristics of Clos networks [Clos 53]

● N = number of servers per ToR switch
 = number of middle switches

● Uniform link capacities

8

Data-center wish to closely satisfy flow demands …
[Ballani et al. 11, Lee et al. 14]

● Guaranteeing predictable bandwidth is desirable for most applications

9

Data-center wish to closely satisfy flow demands …
[Ballani et al. 11, Lee et al. 14]

● Guaranteeing predictable bandwidth is desirable for most applications

… therefore, flow routing in data-center seeks to minimize
congestion [Alizadeh et al. 14, Singla et al. 14, Namyar et al. 21]

10

Characteristics of the minimum congestion routing problem

● Input: Set of flows; flow maps to source-destination pair and demand
○ Aggregate demand on any external link (between server and ToR) ≤ 1

11

Characteristics of the minimum congestion routing problem

● Input: Set of flows; flow maps to source-destination pair and demand
○ Aggregate demand on any external link (between server and ToR) ≤ 1

● Solution: Routing for the flows, that is, assignment from flows to middle switches

12

Characteristics of the minimum congestion routing problem

● Input: Set of flows; flow maps to source-destination pair and demand
○ Aggregate demand on any external link (between server and ToR) ≤ 1

● Solution: Routing for the flows, that is, assignment from flows to middle switches

● Objective: Minimize congestion, that is, maximum aggregate demand routed on
any internal link (between ToR and middle switch)

13

Characteristics of the minimum congestion routing problem

● Input: Set of flows; flow maps to source-destination pair and demand
○ Aggregate demand on any external link (between server and ToR) ≤ 1

● Solution: Routing for the flows, that is, assignment from flows to middle switches

● Objective: Minimize congestion, that is, maximum aggregate demand routed on
any internal link (between ToR and middle switch)

Every flow satisfies its demand if and only if routing has congestion ≤ 1

14

Characteristics of the minimum congestion routing problem

1
0.5
1

0.5
1

Total demand on every
external link is ≤ 1

15

1
0.5
1

0.5
1

Total demand on every
external link is ≤ 1

1
0.5
1

0.5
1

There is internal link with
total demand 1.5

Characteristics of the minimum congestion routing problem

16

1
0.5
1

0.5
1

Total demand on every
external link is ≤ 1

1
0.5
1

0.5
1

This routing has
congestion 1.5

Characteristics of the minimum congestion routing problem

17

With arbitrary flow splitting, minimizing congestion is easy
[Chiesa et al. 17]

● Theorem: For all sets of flows, uniformly splitting each flow demand over all
source-destination paths yields a minimum congestion routing with congestion ≤ 1

18

With arbitrary flow splitting, minimizing congestion is easy
[Chiesa et al. 17]

● Theorem: For all sets of flows, uniformly splitting each flow demand over all
source-destination paths yields a minimum congestion routing with congestion ≤ 1

With splittable flows, every flow satisfies its demand

19

However, flows splitting has significantly deployability challenges
[Qureshi et al. 22, Gangidi et al. 24, Qian et al. 24]

● While there have been multiple proposal for implement splittable flows…
○ Examples: MPTCP [Raiciu et al. 2011], packet-spraying [Dixit et al. 2013]

20

However, flows splitting has significantly deployability challenges
[Qureshi et al. 22, Gangidi et al. 24, Qian et al. 24]

● While there have been multiple proposal for implement splittable flows…
○ Examples: MPTCP [Raiciu et al. 2011], packet-spraying [Dixit et al. 2013]

● … none of them has been adopted in practice
○ Reasons: require deep changes to current protocols, unverified in large scale

21

This talk

22

This talk

● Question #1: Is the congestion of a minimum congestion routing of unsplittable
flows ≤ 1 for all sets of flows? If not, how close to 1 is it?

23

This talk

● Question #2: Is a minimum congestion routing of unsplittable flows computable in
polynomial-time? If not, how well can it be approximated?

● Question #1: Is the congestion of a minimum congestion routing of unsplittable
flows ≤ 1 for all sets of flows? If not, how close to 1 is it?

24

Prior results on minimum congestion routing

25

● In general networks, there are approximation algorithms that ensure worst-case
congestion and approximation factor poly-logarithmic in size N of the network

Prior results on minimum congestion routing
[Raghavan and Tompson 87, Chakrabarti et al. 07]

polylog(N)

26

● In Clos networks, random ECMP ensures worst-case congestion and
approximation factor poly-logarithmic in number N of the middle switches

Prior results on minimum congestion routing
[Al-Fares et al. 08]

polylog(N)…

27

● In Clos networks, state-of-the-art heuristics ensure worst-case congestion and
approximation factor of 2

Prior results on minimum congestion routing
[Melen and Turner 89, Al-Fares et al. 10]

polylog(N)2 …

Possible

28

What we know: worst-case congestion and approximation
factor is between 1 and 2

1 2 polylog(N)…

Possible

29

What we show: worst-case congestion and approximation
factor is between 1.5 and …

● Result #1: (#1.1) Minimum congestion is ≥ 1.5. (#1.2) Furthemore, it is NP-hard to
approximate minimum by factor < 1.5.

1 2 polylog(N)1.5 …

Impossible Possible

30

What we show: worst-case congestion and approximation
factor is between 1.5 and …

● Result #1: (#1.1) Minimum congestion is ≥ 1.5. (#1.2) Furthemore, it is NP-hard to
approximate minimum by factor < 1.5.

1 2 polylog(N)1.5 …

Impossible

● Implication: Special structure of Clos networks cannot avoid some flows obtaining
≤ 2/3 of their demands

Possible

31

… 1.8

● Result #2: There is a polynomial-time algorithm that ensures congestion ≤ 1.8 for
all sets of flows, and approximates minimum congestion by a factor ≤ 1.8

1 2 polylog(N)1.5 …

Impossible

1.8

Possible

32

… 1.8

● Result #2: There is a polynomial-time algorithm that ensures congestion ≤ 1.8 for
all sets of flows, and approximates minimum congestion by a factor ≤ 1.8

1 2 polylog(N)1.5 …

Impossible

1.8

● Implication: Known heuristics are not optimal

Possible

33

What we show: in the online setting, worst-case congestion and
approximation factor is at least 2

● Result #3: No online algorithm (even randomized) approximates minimum
congestion by a factor < 2

1 2

Online:

polylog(N)

Impossible

34

What we show: in the online setting, worst-case congestion and
approximation factor is at least 2

● Result #3: No online algorithm (even randomized) approximates minimum
congestion by a factor < 2

● Implication: There is a strict separation between online and offline settings

1 2

Online:

polylog(N)

Impossible

35

Formal statement for limits to congestion and approximation

36

● Lemma [Hwang 83]: For all sets of flows with demand 1, there is a routing with
congestion 1, and such a routing can be found in polynomial-time

Formal statement for limits to congestion and approximation

37

● Lemma [Hwang 83]: For all sets of flows with demand 1, there is a routing with
congestion 1, and such a routing can be found in polynomial-time

● Theorem #1.1: There is a set of flows with demands 1 or 0.5 such that the
minimum congestion is 1.5

Formal statement for limits to congestion and approximation

38

● Theorem #1.2: For a set of flows with demands 1 or 0.5, deciding if minimum
congestion is ≤ 1 or 1.5 is NP-complete

● Lemma [Hwang 83]: For all sets of flows with demand 1, there is a routing with
congestion 1, and such a routing can be found in polynomial-time

● Theorem #1.1: There is a set of flows with demands 1 or 0.5 such that the
minimum congestion is 1.5

Formal statement for limits to congestion and approximation

39

Key idea for limits to congestion and approximation

● Lemma: For every routing of the tunnel gadget with congestion 1, there is a
different middle switch at each input switch to which no flow is assigned

1
1

1
1

1
1

Funnel gadget

40

Routing with congestion 1

1
1

1
1

1
1

Funnel gadget

Key idea for limits to congestion and approximation

● Lemma: For every routing of the tunnel gadget with congestion 1, there is a
different middle switch at each input switch to which no flow is assigned

41

Proof hint for Theorem #1.1: Add demand 0.5 flows to funnel
gadget such that all middle switches blocked

● Theorem #1.1: There is a set of flows with demands 1 or 0.5 such that the
minimum congestion is ≥ 1.5

1
1

0.5
1
1

0.5
1
1

0.5

1

42

● Theorem #1.2: For a set of flows with demands 1 or 0.5, deciding if minimum
congestion is ≤ 1 or 1.5 is NP-complete

v3

e1

v1 e1

v2

v3 v4

e3

e2

Proof hint for Theorem #1.2: Establish a reduction from
the 3-edge coloring problem

43

Towards a 1.8-approximation algorithm that ensures congestion 1.8

● Linear program corresponding to multi-commodity flow relaxation is not helpful

44

● Linear program corresponding to multi-commodity flow relaxation is not helpful

● Prior work suggests two combinatorial algorithms to build upon

Towards a 1.8-approximation algorithm that ensures congestion 1.8

45

Description of the Melen-Turner algorithm [Melen and Turner 89]

Original network

1
x 1/ε ε
x 1/ε ε

46

Description of the Melen-Turner algorithm [Melen and Turner 89]

Original network

1
x 1/ε ε
x 1/ε ε

1. Build new network from original one; in new network, there are multiple copies of
each ToR, with ≤ N flows per copy in decreasing of demands

1
ε

… …

New network

ε
ε
ε
ε

ε
ε
ε

x 1
x 1
x 1
x 1
x 1

x 1
x 1
x 1

47

Description of the Melen-Turner algorithm [Melen and Turner 89]

2. Find link-disjoint routing in new network

… …

…

…

…

Link disjoint routing in new network Routing in original network

1
x 1/ε ε
x 1/ε ε

1
ε
ε
ε
ε
ε

ε
ε
ε

x 1
x 1
x 1
x 1
x 1

x 1
x 1
x 1

48

● Lemma: Melen-Turner algorithm is a 2-approximation algorithm, and returns a
routing with congestion ≤ 2 for all sets of flows; these bounds are tight

Melen-Turner algorithm has worst-case congestion and
approximation factor no better than 2

1
x 1/ε ε
x 1/ε ε

1
x 1/ε ε
x 1/ε ε

● Tight example:

Congestion 2 routing returned by algorithmCongestion 1 routing

49

Description of the Sorted-Greedy algorithm [Al-Fares et al. 08]

1. Assign flows in decreasing order of demands to minimum congestion paths

1
1

1

50

Melen-Turner algorithm has worst-case congestion and
approximation factor no better than 2

● Lemma: Sorted-greedy algorithm is a 2-approximation algorithm, and returns a
routing with congestion ≤ 2 for all sets of flows; these bounds are tight

● Tight example:

1
1

1

Congestion 2 routing returned by algorithmCongestion 1 routing

1

51

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm,

Key idea for the routing algorithm

52

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm,

● Two-phase algorithm bridged by threshold C:

Key idea for the routing algorithm

53

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm,

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with
congestion ≤ C

Key idea for the routing algorithm

54

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm,

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with
congestion ≤ C

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without
increasing congestion > C

Key idea for the routing algorithm

55

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm,

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with
congestion ≤ C

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without
increasing congestion > C

● Theorem #2: If C = 1.8, then algorithm returns a routing with congestion ≤ 1.8 for
all sets of flows

Key idea for the routing algorithm

56

● Interpolate between the Melen-Turner and Sorted-Greedy algorithm,

● Two-phase algorithm bridged by threshold C:

○ Phase 1: Route a subset of the flows via Melen-Turner algorithm with
congestion ≤ C

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without
increasing congestion > C

● Theorem #2: If C = 1.8, then algorithm returns a routing with congestion ≤ 1.8 for
all sets of flows; however, it is not a 1.8-approximation algorithm

Key idea for the routing algorithm

57

● Two-phase algorithm bridged by threshold C and lower bound L on OPT

○ Phase 1: Route a subset of the flows including all with demand > ⅓ x L via
Melen-Turner algorithm with congestion ≤ C x L

A 1.8-approximation algorithm that guarantees congestion 1.8

○ Phase 2: Route remaining flows via Sorted-Greedy algorithm without
increasing congestion > C x OPT

● Theorem #2: If C = 1.8, then algorithm is a 1.8-approximation algorithm, and
returns a routing with congestion ≤ 1.8 for all sets of flows

58

Towards congestion-free data-center networks?

59

● Question #1 (Virtual machine placement): What if we jointly place virtual machines
in servers and route the flows between them?

Towards congestion-free data-center networks?

60

● Question #2 (Multi-path routing): Does jointly route flows and divide their demands
over a constant number of paths guarantee a congestion-free network?

Towards congestion-free data-center networks?

● Question #1 (Virtual machine placement): What if we jointly place virtual machines
in servers and route the flows between them?

61

1 2

Online:

polylog(N)

Conclusion

1 2 polylog(N)1.81.5 …

Offline:

Miguel Ferreira, maferrei@andrew.cmu.edu
CMU, IST

Impossible

Impossible Possible

