Scheduling Splittable Jobs on Configurable Machines

Matthew Casey

Northeastern University → Northwestern University

David Stalfa

Northeastern University

Rajmohan Rajaraman

Northeastern University

Cheng Tan

Northeastern University

Abstract Definition

Configurable Machine Scheduling (CMS)

We schedule *splittable* jobs on *configurable* machines

Configurable – Each machine is assigned a configuration, which specifies how the machine is partitioned

Splittable – Jobs have a demand, which is satisfied by assigning the job to multiple partitions

Formal Definition

Input:

- 1. Set *B* of *k* block types
- 2. Set *C* of configurations, each a multiset of blocks
- 3. Set *J* of jobs each with a demand and demand table

Formal Definition

Goal: Create a schedule where

- 1. Each machine is assigned a configuration
- 2. Each block is assigned a job
- 3. The number of machines used is minimized

Formal Definition

Motivation

Datacenter scheduling AI inference tasks on modern GPUs:

- Datacenter uses a GPU with Multi-Instance GPU (MIG) like NVIDIA A100 [Configurations]
 - Allows partitioning into smaller hardware isolated GPU blocks
- Models sent to datacenter need to satisfy *d* inference requests per hour [Jobs]
- Profiling details number of requests satisfied per hour on each block [Demand Tables]

Related Work

- CMS generalizes multiset multicover
 - Has a logarithmic hardness that implies logarithmic hardness for CMS
 - We use the greedy algorithm for it [Rajagopalan and Vazirani 1999]
- CMS with implicit configurations generalizes bin packing
 - We use algorithm to find conic integer combinations in fixed dimension from bin packing with constant item types [Goemans and Rothvoss 2020]
- CMS with a single configuration is a fair allocation problem
 - Blocks represents items and jobs represent players
 - Minimize the maximum number of copies of any block

Our Contributions

- 1. Formally defining Configurable Machine Scheduling
- 2. Algorithms and hardness results for CMS and its variants

Problem	Algorithm	Approximation	Hardness
General	LP+ Greedy	$O(\log cnk)$	$\Omega(\log nk)$
O(1) configurations	Extreme-Point LP Rounding	$\begin{array}{c} (2+\varepsilon) \text{OPT} + \ C\ \\ 3+\varepsilon \end{array}$	2
O(1) configurations of $O(1)$ size	Small/Large Job LP	1 + <i>ε</i>	?
O(1) number of jobs and blocks, with all configurations up to a given size	Conic Integer Combinations in Fixed Dimension	1	-

Canonical LP:

- $x_{i,j}$: number of blocks of type *i* assigned to job *j*
- y_{σ} : number of machines assigned configuration σ

$$\begin{split} \sum_{j} x_{i,j} &\leq \sum_{\sigma \in C} y_{\sigma} \cdot \sigma_{i} \quad i \in B \\ \sum_{i} f_{j}(i) \cdot x_{i,j} &\geq d_{j} \quad j \in J \\ x_{i,j} &\geq 0 \quad i \in B \text{ and } j \in J \\ y_{\sigma} &\geq 0 \quad \sigma \in C \end{split} \quad \text{ there are sufficient blocks}$$

Step 1: Enumeration

- Constant number of configurations allows for enumeration over the possible values for y variables
- Max number of configurations needed is $\sum_{j} d_{j}$
- For each configuration search over

$$L = \{ \lfloor (1+\varepsilon)^i \rfloor \mid 0 \le i \le \log_{1+\varepsilon} (\sum_j d_j) \}$$

• These search values will be within a factor $1 + \varepsilon$ of the optimum

Step 2: Feasibility LP

- $$\begin{split} &\sum_{j} x_{i,j} \leq \sum_{\sigma \in C^*} y_{\mathcal{P}_{\sigma} \sigma \sigma \sigma_{i}} \quad i i \in B \\ &\sum_{i} f_j(i) \cdot x_{i,j} \geq d_j \quad j j \in J \\ &x_{i,j} \geq 0 \quad i \in B \\ &a and j j \in J \\ \end{split} \quad \text{wariables are nonnegative} \end{split}$$
- Replace configuration variables y with fixed values are $\mathbb{P}^{negative}$
- Rieplace strefige pation solutions y with fixed values $m \in L^{|C^*|}$

Step 3: Construct Graph

- Construct an auxiliary graph where:
 - Nodes are jobs and blocks
 - An edge exists between a job *j* and block *i* if $x_{i,j} > 0$
- The components in this graph are either trees or have one cycle [Lenstra, Shmoys, Tardos 1987]

Step 3: Construct Graph

- 1. Pick any job in the cycle
- 2. Remove the adjacent edge that satisfies less demand (set *x*-variable to 0)

$$x_{b_1,j_1} \cdot f_{j_1}(b_1)$$
 vs $x_{b_2,j_1} \cdot f_{j_1}(b_2)$

3. Make that job the root of the resulting tree

Step 4: Rounding

1. For each block c child to job j

 $x_{c,j}^* = \lceil 2x_{c,j} \rceil$

2. For each block p parent to job j,

$$x_{p,j}^* = \lfloor 2x_{p,j} \rfloor$$

3. For each configuration σ

$$m_{\sigma}^* = 2m_{\sigma} + 1$$

Theorem. The previous algorithm returns a solution in polynomial time with cost at most $(2 + \varepsilon)OPT + |C|$ to the CMS problem if the number of configurations is constant.

Feasibility:

- Removed edge in cycle is covered by doubling the remaining edge
- Rounded values are all* larger than non-rounded values
- Only use two times + 1 of each block after rounding

Approximation Factor:

$$\sum_{\sigma} m_{\sigma}^* = \sum_{\sigma} (2m_{\sigma} + 1) = 2\sum_{\sigma} m_{\sigma} + ||C|| \le 2(1 + \varepsilon) \text{OPT} + |C|$$

Open Problems

- 1. Is there an Asymptotic PTAS or additive constant approximation when there are a *Constant Number of Configurations*?
- 2. Numerical CMS: each block has a size and only configurations whose blocks' sizes add up to some fixed capacity are allowed
 - 1. Is there a sublogarithmic approximation for Numerical CMS?
- 3. Leverage the structure of the config set to get better algorithms
 - 1. NVIDIA A100's block set is structured as a tree and every valid configuration is a set of blocks with no ancestor-descendant relations
- 4. Consider other objectives such as completion time or flow time, in both offline and online settings