Reshaping Transport and Traffic Engineering in Reconfigurable Data Center Networks

Shawn Shuoshuo Chen

Workshop on Reconfigurable Networks June 2, 2025

Funding to attend this conference was provided by the CMU GSA/Provost Conference Funding.

The scaling crisis of data center networks

The scaling crisis of data center networks

What is optical circuit switch (OCS)?

Optical circuit switch

1:1 in/out mapping

Down during reconfiguration (µs-ms)

Much higher b/w, lower latency

Data rate agnostic

Electrical packet switch

Packet-level multiplexing

No down period

Lower b/w, higher latency

Fixed rate per generation

Reconfigurable Data Center Networks (RDCNs)

Today's talk

- Transport
 - Time-division TCP for demand-oblivious RDCNs [SIGCOMM'22]
- Traffic engineering
 - Precise traffic engineering for demand-aware RDCNs [NSDI'24]

Existing TCP's assumption: stable network path

TCP's goal: match sending rate to available bandwidth.

Demand-oblivious RDCN

Electrical packet switch (EPS)

9

Demand-oblivious RDCN

TCP performs poorly under invalid assumption

TCP performs poorly under invalid assumption

What happened?1) Reactive probing2) Insufficient time to converge3) Overwritten states

Our proposal: Time-division TCP

	Existing TCP	Time-division TCP
Change discovery	Reactive - in-band, probing	Proactive - out-of-band, switch notification
Path modeling	One state: - <i>cwnd, srtt</i>	2 (N) states: - <i>cwnd[], srtt[]</i>

Time-division TCP outperforms existing TCP

Today's talk

- Transport
 - Time-division TCP for demand-oblivious RDCNs [SIGCOMM'22]
- Traffic engineering
 - Precise traffic engineering for demand-aware RDCNs [NSDI'24]

How does a traffic engineering (TE) system work?

Demand-aware RDCN

Demand-awareness introduces heterogeneity

- Skewed traffic distribution (weight ratios)
- Ratios have different actual impact on traffic

OCSes

Heuristics to reduce group space usage

Heuristics to reduce group space usage

Our approach is more precise than current work.

- preciseTE 7% error vs. TableFitting 67% error
- Being deployed at Google

Summary

Demand-oblivious RDCN

Transport: coordination

Demand-aware RDCN

TE: managing heterogeneity

Future direction: All-optical RDCN

- Fast OCS (optical packet switching)
- Fully scheduled, source-routed network
- Scheduling challenge
 - "Incast" avoidance

