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Network Demand vs Capacity Mismatch

[1] A flat datacenter network with nanosecond optical switching (SIGCOMM 2020)



Traditional Approach: Static Datacenter Topologies
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Reconfigurable Datacenter Networks

● Generalization of the design space: Topology can change over time
● Static networks are a special case
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ProjecToR [Sigcomm 2016]
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Which topology has better throughput?
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eg., expander-based
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eg., RotorNet, Sirius
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Amir et al., Optimal oblivious reconfigurable networks, STOC 2022



19



20



21



22



23



24

Emerging Technologies - Optical Networks on the Rise
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Emerging Technologies - Optical Networks on the Rise

Tunable laser

Port 1
Port 2

Port n

Nanosecond scale 
reconfigurable

Future-proof 
bandwidth scaling
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Emerging Technologies - Optical Networks on the Rise

Tunable laser

Port 1
Port 2

Port n

There is a Catch: Bufferless & Circuit Switched
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Timeslot 1
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Timeslot 2
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Timeslot 3
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Timeslot 4
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Timeslot 5
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Timeslot 6
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Timeslot 7
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Timeslot 8
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Periodic Graph



Input: Demand Matrix 𝓜

Number of nodes n

Degree bound d’  in each timeslot

Output: Periodic graph

Maximize: Throughput

Optimal Topology
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Throughput
Periodic Graph

Demand Matrix

 𝜽(𝓜)Ｘ

t

1 2 3 4 5 6 7 8

8
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Throughput

Highest scaling factor such 
that the scaled demand 𝜽

(𝓜) is feasible in the 
periodic graph

𝓜



Input: Periodic Graph𝒢 

              Demand Matrix 𝓜 

Objective: Maximize 𝜽(𝓜)

Output: 𝜽(𝓜) and a feasible flow*

*subject to conservation, demand and capacity constraints
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Throughput of the Periodic Graph



● The periodic graph has the same throughput as that of a static graph it 
emulates - Static Emulated Graph
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Theorem 1: Periodic Graph   Static Graph
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Periodic Graph

Static Emulated Graph
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𝜽

Periodic Graph

Static Emulated Graph



Input: Periodic Graph𝒢 
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Throughput of the Periodic Graph



Input: Periodic Graph𝒢  Static Emulated Graph 𝗚

              Demand Matrix 𝓜 

Objective: Maximize 𝜽(𝓜)

Output: 𝜽(𝓜) and a feasible flow*

*subject to conservation, demand and capacity constraints

63

Throughput of the Periodic Graph
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● Throughput is a function of Average Route Length
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Capacity
Demand x ARL

𝜽

Periodic Graph

Static Emulated Graph
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● Delay bound is a function of:
○ Degree d of the emulated graph
○ Duration of the period 𝚪 ᐧ 𝚫
○ Throughput 𝜽
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Theorem 3: Delay
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● The required buffer is at least the throughput delay product
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● The required buffer is at least the throughput delay product

82

Buffer > Bandwidth x Delay

Theorem 4: Buffer Requirements
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● Maximize Throughput
● Minimize Latency
● Minimize Buffer Requirements

Goals



Input: Periodic Graph𝒢

              Hose model demand matrix set

Available buffer size B at each node

Output: Degree d of the emulated graph                 Periodic graph

Objective: Maximize the worst-case throughput

Optimal Oblivious Topology with Buffer Constraints
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Output: d = B ⁄ (c ·𝚫)

Optimal Oblivious Topology with Buffer Constraints
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Output: d = B ⁄ (c ·𝚫)
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d-regular directed deBruijn graph

Optimal Oblivious Topology with Buffer Constraints
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d-regular directed deBruijn graph

Decomposition to d matchings
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d-regular directed deBruijn graph

Decomposition to d matchings

Periodic graph

Optimal Oblivious Topology with Buffer Constraints
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Output: d = B ⁄ (c ·𝚫)

If the reconfiguration technology (𝚫) remains same:

● Buffer sizes (B)   must keep up with the increase in capacity (c)

If Buffer sizes (B) do not keep up: 

● Increase in capacity (c)  must be accompanied by decrease in reconfiguration 
times (𝚫)

● If not, reducing the degree (d)   of the emulated graph is inevitable to optimize 
throughput → eventually reaching the case of static topologies.

Optimal Oblivious Topology Implications & Future Outlook
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Static DCNs (uni-regular)

Low throughput but low delay and buffer requirements 
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Existing RDCN designs (Emulating a complete graph)

High throughput but high delay and buffer requirements 
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Near-optimal throughput within the available buffer

Static DCN: Low Throughput Existing RDCN: High Delay and buffer 
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*worst-case throughput



*worst-case throughput



A  Traffic-Aware Approach
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Dynamic Reconfigurable Topology
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𝜽

Periodic Graph

Static Emulated Graph



101

Emulated Topology
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Which topology is optimal for throughput?

Emulated Topology



Input: Demand Matrix 𝓜

Number of nodes n

Degree bound d’  in each timeslot

Output: Periodic graph

Maximize: Throughput

Revisiting Optimal Topology Problem
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Input: Demand Matrix 𝓜

Number of nodes n

Degree bound d’  in each timeslot

Period bound Ⲅ

Output: Static degree d  = Ⲅ ✕ d’  multigraph → Periodic graph

Maximize: Throughput

Revisiting Optimal Topology Problem
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*worst-case throughput



*worst-case throughput



Example: Deep Learning Recommendation Model Workload
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Workload



Example: Deep Learning Recommendation Model Workload
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Workload Oblivious Topology



Example: Deep Learning Recommendation Model Workload
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Workload Oblivious Vermilion
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Normalization Upscale

Workload Oblivious Vermilion
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Normalization Upscale Matrix 
Rounding

Traffic-aware schedule

Workload Oblivious Vermilion
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Normalization Upscale Matrix 
Rounding

+ Oblivious 
schedule

Traffic-aware schedule

+ Random 
configuration

Workload Oblivious Vermilion



*worst-case throughput



Insights & Reflection on Metrics for 
Collective Communication



Throughput and Reconfiguration Delay

● 𝚫 = Fraction of time lost in reconfigurations
● Throughput bounds typically scale down by a factor of 1-𝚫

○ e.g., Throughput bound of periodic switching is ½ (1-𝚫)
● How does the absolute value of reconfiguration time impact performance?

○ Is 1 microsecond a satisfactory reconfiguration delay?
○ What about 100 milliseconds?
○ Note: 𝚫 can be small enough irrespective of the reconfiguration delay



Ring AllReduce

● The communication pattern is a matching
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Ring AllReduce

0 1 2 3 4 5 6 7

● The communication pattern is a matching

● Periodic circuit switching
○ Prior analysis suggests a throughput of 1/2  for the above communication pattern
○ Throughput can in fact be as low as 1/8 
○ Demand matrix abstraction may be the culprit for these contradictions!
○ Note: New “demand” (next step) only arrives after completing the previous demand



Key Takeaways

1. Throughput as a metric cannot capture the impact of reconfiguration delay
2. Demand matrix abstraction cannot capture the dependencies in “demand” 

observed in collective communication



Modeling the Completion Time using 𝛼,𝛃 Cost Model

𝛼 : Initialization time for sending out data

𝛃 : Transmission delay for sending one bit at line rate

λ : Congestion factor (number of  flows sharing bandwidth)

𝛼 + m 𝛃 λ = Time taken to send m bits in a single step of the algorithm



Recursive Doubling

● Step 1: Matching

0 1 2 3 4 5 6 7



Recursive Doubling

● Step 2: Matching

0 1 2 3 4 5 6 7



Recursive Doubling

● Step 3: Matching

0 1 2 3 4 5 6 7



Modeling the Completion Time using 𝛼,𝛃 Cost Model

𝛼 : Initialization time for sending out data

𝛃 : Transmission delay for sending one bit

λ : Congestion factor (number of  flows sharing bandwidth)

ẟ : Reconfiguration delay

𝛼 + ẟ + m 𝛃 : Reconfigure and align topology to communication matching

𝛼 + m 𝛃 λ : Mismatch



Circuit Switching for Collective Communication

● Each step of the algorithm is a matching
● The schedule for circuit switching is given!
● Our goal is to minimize the completion time of the collective
● Decision in each step: Reconfigure or not (a binary variable)

A perfect opportunity for optimization!

More details coming soon :)
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