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A Ethernet fabric would allow us to have a
network fabric to carry all kinds of traffic (memory, storage, IP, ...)

... easler to manage, lower cost, statistical bandwidth multiplexing
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Research goal

Achieving near intra-server memory
access latency over rack-scale Ethernet

(while maintaining high bandwidth utilization)
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Latency Overheads of Existing Memory Disaggregation over Ethernet
An example of remote read request over RDMA
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Other Overheads
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12 byte IFG
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‘ Other Overheads 1. Ethernet MAC enforces minimum 64B frame
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Design Choice # 1:

Implement the entire
protocol for remote memory access
within Ethernet’s Physical Layer (PHY)



Architecture of Remote Memory Protocol in the PHY
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‘ Rationale for Remote Memory Protocol in PHY
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Architecture of Remote Memory Protocol in the PHY
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Remote Memory Protocol in the PHY : What about latency?
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Design Choice # 2;

Packet Switching = Reconfigurable
(Circuit) Switching

Using a centralized memory traffic scheduler
Implemented in the PHY of the Ethernet switch



Central Scheduler in the Switch PHY

Compute Node

Application 1

Memory
. Message

ETH PHY

: Protocol for :
. Remote Memory
Access

Create/read
PHY block

Congestion
Control

10ns

ETH PHY

400ns + p

A Match-  Queue
. Acton L
= TINVARSE- TNV A— E

block block

Memory Node

Memory Controller

ETH PHY
' Protocol for

Remote Memory

Access

Create/read
PHY block

Congestion
Control

10ns

19



Central Scheduler in the Switch PHY

Compute Node

Application 1

Memory
. Message

ETH PHY

: Protocol for :
. Remote Memory
Access

Create/read
PHY block

Congestion
Control

10ns

ETH PHY

Central Scheduler

400ns +

A Match-  Queue
..... . Acton .
= TINVARSE- TNV A— E

block block

Memory Node

Memory Controller

ETH PHY
. Protocol for

Remote Memory

Access

Create/read
PHY block

Congestion
Control

10ns

19



Central Scheduler in the Switch PHY
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Central Scheduler in the Switch PHY
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Challenges w/ Central Scheduler

 Challenge 1: Accurate traffic demand estimation
 Challenge 2: Send demands to the switch with low bandwidth, latency overhead

 Challenge 3: Line rate, low latency scheduler pipeline
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Challenges w/ Central Scheduler

 Challenge 1: Accurate traffic demand estimation

e Solution: Leverage the interface to memory controller

 Challenge 2: Send demands to the switch with low bandwidth, latency overhead

e Solution: Leverage request-reply nature of memory access

 Challenge 3: Line rate, low latency scheduler pipeline

e Solution: Leverage hardware parallelism in switch’s PHY
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Implementation & Evaluation
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Evaluation Result
- End-to-end unloaded latency
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Implementation & Evaluation
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Evaluation Result

- Disaggregated workloads in a loaded network
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http://sortbenchmark.org

Summary

« EDM is a low latency Ethernet fabric for memory disaggregation.

 EDM uses two ideas for low latency w/ high bandwidth utilization:

« EDM implements the protocol for remote memory access entirely
INn the Ethernet PHY.

« EDM implements a fast, centralized memory traffic scheduler in
the switch’s PHY.

* EDM incurs a latency of ~300ns (7x lower than RoCE) in an unloaded
network, and < 1.3x its unloaded latency under heavy network loads.
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Thank you!

Code: https://github.com/wegul/EDM


https://github.com/wegul/EDM

