
Hardware Feasibility for (Semi-)Oblivious
Reconfigurable Networks

Speaker: Yunxi Shen

1

Based on joint work with Daniel Amir, Nitika Saran, Tegan Wilson, Robert Kleinberg, Vishal
Shrivastav, and Hakim Weatherspoon

Challenges for ORN / SORN Hardware

2

● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?

Oblivious Reconfigurable Networks

3

Shale
● Divides the datacenter into h dimensions

○ 1 round-robin for each dimension
● Valiant Load Balancing

○ 1 spraying hop + 1 direct hop for each dimension

A

B
C

D

F

E

H

I
G

Oblivious Reconfigurable Networks

4

A

B
C

D

F

E

H

I
G

h=1
● 1 round-robin -> schedule length is 8
● 1 spraying hop + 1 direct hop

Oblivious Reconfigurable Networks

5

A

B
C

D

F

E

H

I
G

h=2
● 2 round-robins -> schedule length is 4
● 2 spraying hops + 2 direct hops

Oblivious Reconfigurable Networks

6

A

B
C

D

F

E

H

I
G

h↗
● Shorter schedule -> lower latency
● More hops -> lower throughput

��
��

Semi-Oblivious Reconfigurable Networks

7

SORN
● Intra-cluster: 1 spray + 1 direct
● Inter-cluster: 1 intra-cluster spray + 1 inter-cluster direct, 1

intra-cluster directA

B
C

D

F

E

H

I
G

Hardware Design

8

A

B
C

D

F

E

H

I
G

Host

Scheduler

Mac

req/recv
cells for Tx

Circuit Switch

Rx Tx

Start

Stats

● Terasic DE5-Net boards, Altera Stratix V FPGA
● Bluespec System Verilog

Challenges for ORN / SORN Hardware

9

● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?

Token-based Congestion Control

A

B
C

D

F

E

H

I
G

10

final destination

<d, s>

remaining spraying hops

Token:

Flow: A->G

Shale (h=2)

Token-based Congestion Control

A

B
C

D

F

E

H

I
G

11

<G, 1> <G, 0>

<G, 0>

<G, 1>

<G, 0>

<G, 0>

final destination

<d, s>

remaining spraying hops

Token:

Flow: A->G

Shale (h=2)

Token-based Congestion Control

A

B
C

D

F

E

H

I
G

final destination

12

<d, s>

remaining spraying hops

Token:

Flow: A->G

Expend token

Replenish token

<G, 1> <G, 0>

<G, 0>

<G, 1>

<G, 0>

<G, 0>

In hardware
● Store # of remaining tokens (per-neighbor)
● Store which tokens to replenish (per-neighbor)
● Find first cell that can be sent given the current token count

Shale (h=2)

Token-based CC in Hardware

13

A

B
C

D

F

E

H

I
G

<G, 1> <G, 0>

<G, 0>

<G, 1>

<G, 0>

<G, 0>

…

PIEO queues

…

Token return
queues

Token
counter

Scheduler
Host

Mac

Shale (h=2)

PIEO (Push-In, Extract-Out) Queues:
● Dequeue the first eligible cell in 3 clock cycles

Challenges for ORN / SORN Hardware

14

● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?

RX Path for ORNs / SORNs: 2 cycles

15

Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or

received
● Calculate cell’s next hop

cell

Scheduler

cell

RX Path for ORNs / SORNs: 2 cycles

16

Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or

received
● Calculate cell’s next hop

cell

Scheduler

cell

Token
Counts

update
Cycle 2:

● Update token counts

RX Path for ORNs / SORNs: 2 cycles

17

Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or

received
● Calculate cell’s next hop

cell

…

spray/fwd_buffer

Scheduler

cell write

Token
Counts

update
Cycle 2:

● Update token counts
● Write cell data to buffers in DRAM

RX Path for ORNs / SORNs: 2 cycles

18

Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or

received
● Calculate cell’s next hop

cell

…

spray/fwd_buffer

Scheduler

cell write

Token
Counts

update

…

PIEO queues

enqueue

Cycle 2:
● Update token counts
● Write cell data to buffers in DRAM
● Enqueue flow metadata to PIEO queue

TX Path for ORNs / SORNs: 7 cycles

19

Scheduler

TX Path for ORNs / SORNs: 7 cycles

20

flow

Scheduler

…

PIEO queues

dequeue

TX Path for ORNs / SORNs: 7 cycles

21

spray/fwd_buffer

Host buffer

Token return queue

flow

Scheduler

…

PIEO queues

dequeue

enqueue token

Token
Counts

update

TX Path for ORNs / SORNs: 7 cycles

22

spray/fwd_buffer

Host buffer

cell Token return queue

flow

token(s)

Scheduler

…

PIEO queues

dequeue

enqueue token

Token
Counts

update

TX Path for ORNs / SORNs: 7 cycles

23

spray/fwd_buffer

Host buffer

cell Token return queue

Flow data

token(s)

Scheduler

…

PIEO queues

dequeue

enqueue token

Token
Counts

update

Challenges for ORN / SORN Hardware

24

● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?

SORN (with k clusters)
Memory consumption:

Shale
Memory consumption:

Unoptimized On-chip Memory Consumption

25

…

PIEO queues

…

Token return
queues

Token
counter

On-Chip Memory

Observation:
There are only a small number of tokens being used at any time in

any node

Optimization for On-chip Memory Consumption

26

…

PIEO queues

…

Token return
queues

Token
counter

On-Chip Memory

forward
map

reverse
map

Token index map

Keep track of only the tokens currently being used

● Limit the number of active tokens to A
● Store the mapping and reverse mapping of

token IDs to active token indices

Memory Layout for Shale

27

Token counter

T
…

T

Token return queues

B

B

…PIEO
queues

On-Chip Memory

forward
map
hN

reverse
map

A

Assuming each node has at most A active tokens, at most P
token IDs in each PIEO queue, and at most T tokens to return to
neighbors, the total on-chip memory requirement is:

Memory Layout for SORN

28

Token counter

T
…

T

Token return queues

B

B

…PIEO
queues

On-Chip Memory

forward
map

N

reverse
map

A

Assuming each node has at most A active tokens, at most P
token IDs in each PIEO queue, and at most T tokens to return to
neighbors, the total on-chip memory requirement is:

On-chip memory scalability

29

Shale (unoptimized):

SORN (unoptimized):

On-chip memory scalability

30

Shale:

Shale (unoptimized):

SORN (unoptimized):

On-chip memory scalability

31

Shale:

SORN:

Shale (unoptimized):

SORN (unoptimized):

Hardware Prototype vs Packet Simulator

32

Shoal (Shale, h=1)
● Throughput (left)
● Flow completion time (right)

Shale(h=2, 4)
● Throughput (left)
● Queue occupancy (right)

Conclusion

33

● (S)ORNs can be prototyped in hardware using FPGAs.

● Routing and congestion control can be implemented and optimized in hardware.

● With optimizations, (S)ORN hardware achieves good on-chip memory scalability.

● Hardware prototypes achieve the same performance as their respective packet simulators.

References

34

[1] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: a network
architecture for disaggregated racks. In Proceedings of the 16th USENIX Conference on Networked Systems Design and Implementation (NSDI'19). USENIX
Association, USA, 255–270.

[2] Daniel Amir, Nitika Saran, Tegan Wilson, Robert Kleinberg, Vishal Shrivastav, and Hakim Weatherspoon. 2024. Shale: A Practical, Scalable Oblivious
Reconfigurable Network. In Proceedings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM '24). Association for Computing Machinery, New York, NY, USA,
449–464.

[3] Tegan Wilson, Daniel Amir, Nitika Saran, Robert Kleinberg, Vishal Shrivastav, and Hakim Weatherspoon. 2024. Breaking the VLB Barrier for Oblivious
Reconfigurable Networks. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing (STOC 2024). Association for Computing Machinery, New
York, NY, USA, 1865–1876.

[4] Nitika Saran, Daniel Amir, Tegan Wilson, Robert Kleinberg, Vishal Shrivastav, and Hakim Weatherspoon. 2024. Semi-Oblivious Reconfigurable Datacenter
Networks. In Proceedings of the 23rd ACM Workshop on Hot Topics in Networks (HotNets '24). Association for Computing Machinery, New York, NY, USA, 150–158.

[5] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal. 2022. Optimal oblivious reconfigurable networks. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022). Association for Computing Machinery, New York, NY, USA,
1339–1352.

[6] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable,
Low-complexity, Optical Datacenter Network. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '17).
Association for Computing Machinery, New York, NY, USA, 267–280.

[7] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and
Hugh Williams. 2020. Sirius: A Flat Datacenter Network with Nanosecond Optical Switching. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM '20). Association for
Computing Machinery, New York, NY, USA, 782–797.

