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Based on joint work with Daniel Amir, Nitika Saran, Tegan Wilson, Robert Kleinberg, Vishal 
Shrivastav, and Hakim Weatherspoon



Challenges for ORN / SORN Hardware
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● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?



Oblivious Reconfigurable Networks
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Shale
● Divides the datacenter into h dimensions

○ 1 round-robin for each dimension
● Valiant Load Balancing

○ 1 spraying hop + 1 direct hop for each dimension
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Oblivious Reconfigurable Networks
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h=1
● 1 round-robin -> schedule length is 8
● 1 spraying hop + 1 direct hop



Oblivious Reconfigurable Networks
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h=2
● 2 round-robins -> schedule length is 4
● 2 spraying hops + 2 direct hops



Oblivious Reconfigurable Networks
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h↗
● Shorter schedule -> lower latency  
● More hops -> lower throughput      
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Semi-Oblivious Reconfigurable Networks
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SORN
● Intra-cluster: 1 spray + 1 direct
● Inter-cluster: 1 intra-cluster spray + 1 inter-cluster direct, 1 

intra-cluster directA
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Hardware Design
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● Terasic DE5-Net boards, Altera Stratix V FPGA
● Bluespec System Verilog



Challenges for ORN / SORN Hardware
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● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?



Token-based Congestion Control
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final destination

<d, s>

remaining spraying hops

Token:

Flow: A->G

Shale (h=2)



Token-based Congestion Control
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<G, 1> <G, 0>

<G, 0>

<G, 1>
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<G, 0>

final destination

<d, s>

remaining spraying hops

Token:

Flow: A->G

Shale (h=2)



Token-based Congestion Control
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<d, s>

remaining spraying hops

Token:

Flow: A->G

Expend token

Replenish token

<G, 1> <G, 0>

<G, 0>

<G, 1>

<G, 0>

<G, 0>

In hardware
● Store # of remaining tokens (per-neighbor)
● Store which tokens to replenish (per-neighbor)
● Find first cell that can be sent given the current token count 

Shale (h=2)



Token-based CC in Hardware
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Mac

Shale (h=2)

PIEO (Push-In, Extract-Out) Queues:
● Dequeue the first eligible cell in 3 clock cycles



Challenges for ORN / SORN Hardware
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● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?



RX Path for ORNs / SORNs: 2 cycles
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Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or 

received
● Calculate cell’s next hop

cell

Scheduler

cell



RX Path for ORNs / SORNs: 2 cycles
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Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or 

received
● Calculate cell’s next hop

cell

Scheduler

cell

Token 
Counts

update
Cycle 2:

● Update token counts



RX Path for ORNs / SORNs: 2 cycles
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Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or 

received
● Calculate cell’s next hop

cell

…

spray/fwd_buffer

Scheduler

cell write

Token 
Counts

update
Cycle 2:

● Update token counts
● Write cell data to buffers in DRAM



RX Path for ORNs / SORNs: 2 cycles
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Cycle 1:
● Parse tokens in the received cell
● Determine if the cell should be sprayed, forwarded or 

received
● Calculate cell’s next hop

cell

…

spray/fwd_buffer

Scheduler

cell write

Token 
Counts

update

…

PIEO queues

enqueue

Cycle 2:
● Update token counts
● Write cell data to buffers in DRAM
● Enqueue flow metadata to PIEO queue



TX Path for ORNs / SORNs: 7 cycles
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Scheduler



TX Path for ORNs / SORNs: 7 cycles

20

flow

Scheduler
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PIEO queues

dequeue



TX Path for ORNs / SORNs: 7 cycles
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TX Path for ORNs / SORNs: 7 cycles
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TX Path for ORNs / SORNs: 7 cycles
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Challenges for ORN / SORN Hardware
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● How can congestion control be implemented for ORNs/SORNs?

● Can (semi-)oblivious routing be implemented with low clock cycle overhead?

● How can on-chip memory consumption be minimized for better scalability?



SORN (with k clusters)
Memory consumption: 

Shale
Memory consumption: 

Unoptimized On-chip Memory Consumption
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…

PIEO queues

…

Token return 
queues

Token 
counter

On-Chip Memory

Observation:
There are only a small number of tokens being used at any time in 

any node



Optimization for On-chip Memory Consumption
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…

PIEO queues

…

Token return 
queues

Token 
counter

On-Chip Memory

forward 
map

reverse 
map

Token index map

Keep track of only the tokens currently being used

● Limit the number of active tokens to A
● Store the mapping and reverse mapping of 

token IDs to active token indices



Memory Layout for Shale
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Token counter
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Token return queues
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forward 
map
hN
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A

Assuming each node has at most A active tokens, at most P 
token IDs in each PIEO queue, and at most T tokens to return to 
neighbors, the total on-chip memory requirement is:



Memory Layout for SORN
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Assuming each node has at most A active tokens, at most P 
token IDs in each PIEO queue, and at most T tokens to return to 
neighbors, the total on-chip memory requirement is:



On-chip memory scalability 
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Shale (unoptimized): 

SORN (unoptimized):



On-chip memory scalability 
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Shale:

Shale (unoptimized): 

SORN (unoptimized):



On-chip memory scalability 
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Shale:

SORN:

Shale (unoptimized): 

SORN (unoptimized):



Hardware Prototype vs Packet Simulator
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Shoal (Shale, h=1)
● Throughput (left)
● Flow completion time (right)

Shale(h=2, 4)
● Throughput (left)
● Queue occupancy (right)



Conclusion
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● (S)ORNs can be prototyped in hardware using FPGAs.

● Routing and congestion control can be implemented and optimized in hardware.

● With optimizations, (S)ORN hardware achieves good on-chip memory scalability.

● Hardware prototypes achieve the same performance as their respective packet simulators.
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